
CAPH Reference Manual - 2.9

J. Sérot

CAPH

Contents

1 Introduction 4
1.1 Motivation, goals and principles . 5
1.2 Language principles . 6
1.3 Language Structure . 7

1.3.1 The network language . 7
1.3.2 The actor Language . 10

1.4 Tools and design flow . 11

2 CAPH Overview 13
2.1 Language structure . 13
2.2 Types . 13

2.2.1 Scalar types . 13
2.2.2 Structured types . 14
2.2.3 Translation to SystemC and VHDL types . 14

2.3 CAPH expression language . 16
2.3.1 Constants . 17
2.3.2 Variables . 17
2.3.3 Function application . 17
2.3.4 Conditionals . 17
2.3.5 Local Declarations . 18
2.3.6 Type coercion . 18
2.3.7 Attributes . 19

2.4 CAPH declaration language . 20
2.4.1 Type declarations . 20
2.4.2 Value declarations . 23
2.4.3 I/O declaration . 24
2.4.4 Actor declarations . 24
2.4.5 Polymorphism . 34
2.4.6 Higher order actors . 39
2.4.7 Network declarations . 42

2.5 A complete example . 59

3 Syntax 64

4 Core Abstract Syntax 71

1

5 Typing 73
5.1 Notations . 74
5.2 Typing rules . 75

5.2.1 Programs . 75
5.2.2 Value declarations . 75
5.2.3 Actor declarations . 76
5.2.4 Expressions . 78
5.2.5 IOs . 79
5.2.6 Network declarations . 80
5.2.7 Type expressions . 81

6 Static semantics 83
6.1 Programs . 86
6.2 Value declarations . 87
6.3 Expressions . 87
6.4 Actor declarations . 88
6.5 Stream declarations . 89
6.6 Network declaration . 90

6.6.1 Network expressions . 91
6.6.2 Recursive network definitions . 92

7 Dynamic semantics 95
7.1 Semantic domain . 95
7.2 Programs . 96

7.2.1 Conversion from boxes to processes . 96
7.2.2 Conversion from wires to channels . 98

7.3 Processes . 98
7.3.1 Identifying and marking active processes . 99
7.3.2 Individual process execution . 101

8 Model of Computation 104
8.1 Dataflow Process Networks . 104
8.2 The Caph Process Network model . 107

8.2.1 Token values . 107
8.2.2 Rule patterns . 108
8.2.3 Patterns . 108
8.2.4 Pattern matching . 108
8.2.5 Example . 108
8.2.6 Classification of CAPH actors . 108
8.2.7 Static computation of FIFO sizes . 115

9 Intermediate representation 119
9.1 Network generation . 119
9.2 Behavioral description . 119

10 Using the caph compiler 123
10.1 Generating a graphical representation of the program . 123
10.2 Running the simulator . 123
10.3 Generating SystemC code . 124
10.4 Generating VHDL code . 124

2

10.5 File I/O . 125
10.5.1 Port I/O . 126
10.5.2 File globbing . 126
10.5.3 File IO when using the VHDL backend . 127
10.5.4 Reading and writting image files . 128
10.5.5 Blanking . 128

10.6 File inclusion . 129
10.7 Passing command-line options to programs . 129
10.8 Conditional compilation . 130
10.9 Adjusting FIFO size . 130
10.10Dumping box FSMs . 132
10.11The caphmake utility . 132

11 The CAPH standard libraries 136

12 Foreign function interfacing 154

13 Compiler options 157

14 Implementation of variant types 160

A Writing your own FIFO model 163

B The txt2bin command 164

C The bin2txt command 166

D The pgm2txt command 168

E The txt2pgm command 169

F The pgm2bin command 170

G The bin2pgm command 172

H The mkdcimg command 173

I The mkconv command 175

J The caphmake command 177

3

Chapter 1

Introduction

This document describes the CAPH programming language. CAPH1 is a domain-specific, high-level
language for programming FPGAs. CAPH is based upon the dataflow process network model of com-
putation [4] and produces implementations relying on a pure data-driven execution model. The CAPH
compiler is able to generate synthetizable VHDL code from high-level descriptions of programs as net-
works of interconnected dataflow actors.

This report is structured as follows: the remainder of this chapter provides motivation and general
background; Chapter 2 is an overview of the CAPH language design, including informal descriptions
of the expression, network and actor sub-languages. The full concrete syntax is given in chapter 3
and the abstract syntax of the core language in chapter 4. Chapter 5 gives the formal typing rules
for CAPH programs. Chapter 6 gives the formal static semantics, i.e. the interpretation of CAPH
programs as data-flow graphs. Chapter 7 gives the formal dynamic semantics, which provides a way
to simulate CAPH programs. Chapter 9 describes the intermediate representation of CAPH programs
used as an input for the back-end code generators. Chapter 10 describes, pragmatically, how to use
the compiler in order to obtain graphical representations of programs, simulate them or invoke the
SystemC or VHDL backend in order to generate code. Chapter 11 gives the contents of some “standard
libraries”. Chapter 12 describes the mechanism by which existing C or VHDL functions can be used
by CAPH programs. Chapter 13 is a summary of compiler options. Chapter 14 is a short, technical,
overview of how variant types (described in chapter 2) are implemented in SystemC and VHDL.

1CAPH stands for Caph just Ain’t Plain HDL. Caph is also the name of the second bright star in the constellation of
Cassiopeia.

4

1.1 Motivation, goals and principles

The design of the CAPH language was guided by the following motivations and general principles:

Specificity. Although most of its underlying concepts are very general – and could indeed be
applied to a large variety of programming languages targetting either software or hardware –, the
CAPH language has been primarily designed to program FPGAs. This deliberate orientation allowed
us to make clear and argumented choices regarding the set of supported features. Other languages
relying on the same model of computation (MoC) – such as cal [5] for example – are less specific,
targeting both software and hardware implementations, and sometimes offer a richer set of features.
But this richness comes at the price of ambiguity since it’s frequent that not all features are supported
in hardware implementations. Moreover, the set of supported features is not always clearly documented
and must often be defined by tedious, repeated experiments. Our approach is more pragmatic, if less
ambitious: if it can be described, it can be implemented.

Formal basis. We strongly adhere to the idea that any decent programming language should be
based upon formal semantics, describing in a complete and unambiguous manner the meaning of pro-
grams. The essentially functional orientation of CAPH greatly eases the writing of such semantics.
It also makes it possible to describe formally, and in a platform-independant way, the transformation
process by which the high level language source code is turned into low-level VHDL code, a highly
desirable property in our case, since it allows reasoning about this process (for certification and op-
timization purposes for example). Another advantage is the ability to derive (in a systematic way) a
reference interpreter for the language. Such a reference interpreter can then be used latter to assess the
correctness of the results produced by generated low-level code.

Minimum distance between the programming model and the execution model. This is the key
idea for being able to produce efficient low-level harware solutions from high-level descriptions while
keeping adherence to the second principle. Abstraction and efficiency being generaly perceived as
contradictory requirements, this principle is often interpreted as : keep the the abstraction low at
source level. Fortunately, this is not the case with the dataflow programming and execution models
CAPH is relying on. A large part of this is due to the natural affinity between the dataflow MoC and
the concepts used in purely functional programming languages (absence of side-effects, polymorphic
type systems, higher-order constructs).

Beside these general principals, CAPH was also developped with a set of more technical / pragmatical
goals in mind :

Strict separation of concerns between computation and communication. This is reflected by the
structure of the language, which embeds an expression language (for describing computations) within a
declaration language (for describing the global structure of the program) on the one hand, and provides
two separate sub-languages for describing the behavior of actors and the communication network by
which these actors interact, on the other hand.

Composability, modularity. This refers to the ability to build large, complex applications from
smaller, simpler ones. This is naturally supported by the dataflow model of computation (no shared
variables and hence no hidden dependencies) and the purely functional coordination language (referen-
tial transparency).

Reuse. Within the language, this is supported by higher-order constructs. At the actor level,
higher-order actors can be used to encapsulate recurrent patterns of computations. At the network level,
higher-order functions can be used to encapsulate recurrent patterns of communication. CAPH also
offers the ability to import legacy existing code (in VHDL for synthesis, in C/SystemC for simulation).

Arbitrary data structuring. By this we mean the ability to encode values – and, jointly, to
describe actors operating on these values – having an arbitrarily complex data structure. In particular,

5

the language should support the description of operations on non-regular and/or or variable-sized data
structures (lists or trees, as opposed to fixed-sized arrays, for instance). In other words, the target
applications should not be limited to regular signal or image processing. In CAPH, this is provided by
separating the tokens exchanged by actors into two classes : data tokens (carrying actual values) and
control tokens (acting as structuring delimiters).

1.2 Language principles

CAPH is based upon the dataflow process network model of computation [4]. Applications are described
networks of computational units, called actors, exchanging streams of tokens through FIFO channels.
Interaction between actors is strictly limited to token exchange through channels, so that the behavior
of each actor can be completely described in terms of actions performed on its inputs to produce outputs
(no side effect, strictly local control).

We will illustrate this model with a very simple example, involving four basic actors. These actors
are depicted Fig. 1.1. Actor INC (resp. DEC) adds (resp. substracts) 1 to each element of its input
stream. Actor MUL performs point-wise multiplication of two streams. Actor DUP duplicates its input
stream2. Now, if we connect these four actors to build the network depicted in Fig 1.2, this network
computes f(x) = (x+ 1)× (x− 1) for each element x of its input stream. I.e. if the input stream i is
1,2,3,..., then the output stream o will be 0,3,8,...

INC...,2,1 ...,3,2 DEC...,2,1 ...,1,0

MUL
...,2,1

...,8,3
...,4,3

DUP...,2,1
...,2,1

...,2,1

Figure 1.1: Four basic actors

DUP

INC

MUL

DEC

oi

Figure 1.2: A dataflow process network

2In Fig. 1.1, streams are denoted (ordered) from right to left; for example, the actor ADD first processes the token 1,
then the token 2, etc. Since streams are potentially infinite, their end is denoted “...”. However, when describing actors
textually, streams will be denoted from left to right; for example: ADD:1,2,... = 2,3,...

6

Such a model of computation is indeed very general and can be interpreted in different ways, de-
pending in particular in

• the kind of behavior that can be assigned to actors (purely functional, stateful, firing semantics,
. . .),

• the exact nature of channels (single place buffer / FIFO, bounded / unbounded, . . .),

• how networks are described.

In CAPH

• the behavior of actors is specified using a set of transition rules using pattern matching and actors
are stateful,

• channels are bounded FIFOs,

• networks are described in a implicit manner, using a set of functional equations.

These aspects are detailed in the next section.

1.3 Language Structure

In common with other coordination language approaches such as Hume [6], CAPH takes a layered
approach (see Fig. 1.3).

The outermost (declaration) layer declares types, global values (constant and functions), I/O streams,
actors and network-level objects (wires and wiring functions).

The innermost (expression) layer is a small, purely functional language used for describing values
and computations. This language is used both for defining the values assigned to global constants and
functions and the values computed by actors.

At an intermediate level, two sub-languages can be distinguished : an actor sub-language, used for
describing the interface and the behavior of actors, and a network sub-language, used for describing the
structure of the dataflow process network. Both languages are functionnaly-based,

1.3.1 The network language

The CAPH network language is used for describing the structure of the dataflow process network
describing the program. It is purely functional, polymorphic and supports higher-order functions. It is
largely inspired from previous work on the fgn system [10].

The basic unit of coordination is the box. A box is an instance of an actor, viewed abstractly, i.e.
only retaining its interface (parameters and input/output ports). The network language is responsible
for describing the wiring of these boxes to form the dataflow process network corresponding to the
program to be implemented (including the connections to the external devices).

The basic concept is that the network of actors is actually a dataflow graph (DFG) and that a DFG
can be described by means of purely functional expressions [11].

Consider for example, the minimal network depicted in Fig. 1.4, in which inc is an actor with
one input and one output, i an input stream and o an output stream3. It can be described with the
following CAPH declaration :

net o = inc i;

This declaration
3This figure has been produced with the CAPH graph visualizer. Actors are drawn as rectangular boxes and I/O

streams as triangles.

7

type t = ...

const c = ...

function f = ...

stream s = ...

actor a1 ...

actor a2 ...

net x = ...

net g x = ...

Declaration layer

Expression layer

Actor language

Network language

Figure 1.3: Caph language structure

1. instanciates the inc actor, i.e. creates a box in the network,

2. connects the network stream input i to the input of this box,

3. connects the network stream output o to the output of the inc box.

Usage of net declarations is of course not limited to binding network outputs. They are generally
used to bind the output(s) of a box, in order to reuse it (them) in subsequent declarations, thus “wiring”
the network. Such values are therefore called “wires” in the network language. A minimal example for
this is given in Fig. 1.5, where two instances of the inc actor are wired together.

Note that the same network could have been described without naming the intermediate wire, by
writing just : net o = inc (inc i);

The network depicted in Fig. 1.2 can be described with the following CAPH declarations4, showing
in particular how multiple outputs of an actor can be bound, using a tuple value :� �
net (i1 , i 2) = dup i ;
net o = mul (inc i1 , dec i 2) ;� �

4Provided that the dup, inc, dec and mul actors have been previously declared with the right interface and that i and
o designate the input and output of the network.

8

oi inc

Figure 1.4: A minimal actor network� �
net x = inc i ;
net o = inc x ;� � oi inc incx

Figure 1.5: A small actor network

Compared to other textual or graphical network languages, this notation offers a significantly higher
level of abstraction. In particular it saves the programmer from having to explicitly describe the wiring of
channels between actors, a tedious and error-prone task. Moreover, ill-formed networks and inconsistent
use of actors can be readily detected using a classical Hindley-Milner polymorphic type-checking phase.

Another advantage of “encoding” data-flow networks in a functional language is the ability to define
reusable, polymorphic graph patterns in the form of higher-order functions, which offers an easy and
safe compositional approach for building larger applications from smaller ones.

For example, the network of Fig 1.2 could also have been described with the following declarations,
in which the diamond function encapsulates the diamond-shaped graph pattern examplified here :� �
net diamond (l e f t , top , bottom , r i g h t) x =

l et (x1 , x2) = l e f t x in
r i g h t (top x1 , bottom x2) ;

net o = diamond (dup , inc , dec , mul) i ;� �
The diamond function is called a wiring function in the CAPH network language. From a functional

perspective, this is a higher-order function, i.e. a function taking other function(s) as argument(s). Once
defined, such a function can be reused to freely instanciate graph patterns. For example, the network
depicted in Fig 1.6, in which the “diamond” pattern is instanciated at two different hierarchical levels,
can be simply described with the following declaration :� �
net o = diamond (dup , inc , diamond (dup , inc , dec , mul) , mul) i ;� �

oi dup mul

inc

mulinc

dec

dup

Figure 1.6: A hierachical network

9

1.3.2 The actor Language

The CAPH actor language is used to describe the behavior of individual dataflow actors. This is done
using a set of transition rules, fired according to a generalized pattern-matching mechanism. The
actions performed by each rule are described using a purely functional, primitive recursive language
with a strict semantics.

A complete description of the actor language will be given in the next chapter. In this section, we
will just introduce it using a simple example. Let us consider the actor merge described in Fig. 1.7. This
actor takes two streams of tokens as inputs and produces one stream of tokens, taking input alternately
from the first and second output. Its behavior description in CAPH is given on the left. It has two
inputs and one output, all of type int. It also uses a local variable, s, of type bool. Its behavior is
specified using a set of rules defined under the rules keyword. Each rule consists of a set of patterns
refering to inputs or local variables and a corresponding set of expressions, refering to outputs or local
variables. The first (resp. second) rule says : If s is ’false’ (resp. ’true’) and a value v is available
on input i1 (resp. i2) then read5 this value, write it to output o and set s to ’true’ (resp. ’false’).

Fig. 1.8 gives the description in CAPH of the four actors introduced in Fig. 1.1.

actor merge ()
 in (i1:int)
 in (i2:int)
 out (o:int)
 var s : bool = false
 rules
 | (s:false, i1:v) -> (o:v, s:true)
 | (s: true, i2:v) -> (o:v, s:false)

I/O declarations

Local variables
declarations

Rules

i2i1

o

merge

.

.

.
6
4
8

.

.

.
4
5
9

.

.

.
5
4
9
8

Figure 1.7: An example of actor description in CAPH

5Pop the connected channel.

10

� �
actor i n c

in (i : i n t)
out (o : i n t)

rules
i : x −> o : x+1;� �

� �
actor dec

in (i : i n t)
out (o : i n t)

rules
i : x −> o : x−1;� �� �

actor mul
in (i 1 : int , i 2 : i n t)

out (o : i n t)
rules

(i 1 : x , i 2 : y) −> o : x+y ;� �

� �
actor dup

in (i : i n t)
out (o1 : int , o2 : i n t)

rules
i : x −> (o1 : x , o2 : x) ;� �

Figure 1.8: CAPH description of the four actors introduced in Fig.

1.4 Tools and design flow

The current tool chain supporting the CAPH language is sketched on Fig. 1.9. It comprises a graph
visualizer, a reference interpreter and compiler producing both SystemC and synthetizable VHDL code.

The graph visualizer produces representations of the actor network in the .dot format [8] for
visualisation with the graphviz suite of tools [1].

The reference interpreter implements the dynamic semantics defined in Sec. 7. Its role is to
provide reference results to check the correctness of the generated SystemC and VHDL code. It can
also be used to test and debug programs, during the first steps of application development (in this
case, input/output streams are read from/written to files). Several tracing and monitoring facilities are
provided. For example, it is possible to compute statistics on channel occupation or on rule activation.

The compiler is the core of the system. It relies on an elaboration phase, turning the AST into a
target-independant intermediate representation (described in chapter 9), and a set of dedicated back-
ends.

Two back-ends are currently provided : the first produces cycle-accurate SystemC code for simulation
and profiling, the second VHDL code for hardware synthesis. Execution of the SystemC code provides
informations which are used to refine the VHDL implementation (for example : the actual size of the
FIFOs used to implement channels).

The graph visualizer, the reference interpreter and the compiler all operate on an abstract syntax
tree (AST) produced by the front-end after parsing and type-checking.

11

Source

Code

Front-end (Parsing,

 type checking)

Abstract

Syntax Tree

Elaboration

SystemC

Back-end

VHDL

Back-end

.cpp, .h .vhd

C++ Compiler

executable

Synthesis

Bit Stream

Intermediate

Representation

B
ac

k
 A

n
n

o
ta

ti
o

n
s

(F
if

o
 s

iz
e)

FPGA

Graph

Visualizer

Reference

interpreter

 Compiler

Figure 1.9:

12

Chapter 2

CAPH Overview

This chapter introduces the CAPH language. The basic structure of programs is presented. Its syntax
and semantics are introduced informally, by means of examples. Formal accounts can be found in
chapters 3, 4, 5, 6 and 7. In the examples, comments follow the CAPH syntax : they are single-line
and starts with “--”.

2.1 Language structure

As stated in introduction, CAPH is a layered language.
The outermost (declaration) layer declares types, global values (constant and functions), I/O streams,

actors and network-level objects (wires and wiring functions). The innermost (expression) layer is used
for describing computations. An actor sub-language is used for describing the interface and the behav-
ior of actors and a network sub-language is used for describing the structure of the dataflow process
network.

All layers essentially share a common type system, which is presented in the next section.

2.2 Types

Broadly speaking, two categories of types can be distinguished: scalar types and structured types1.

2.2.1 Scalar types

Scalar types are described in Table 2.1. They include signed and unsigned fixed-precision integers,
booleans and floating-point values2.

Builtin operations provided on scalar types are summarized in Table 2.2. By builtin, we mean the
operations which

• have a runtime implementation at the simulator level,

• can be a automatically translated to their SystemC and VHDL equivalent by the compiler back-
ends3.

1The concept of type variable is discussed separately in Sec. 2.4.5
2Support of floating-point values by the VHDL backend is platform-dependant (see Sec. 2.2.3).
3The support of floating-point values ultimately depends on the VHDL compiler.

13

int Generic (signed) integer, range is implementation dependant

signed<prec> Sized signed integer, range is −2prec−1 . . . 2prec−1 − 1

unsigned<prec> Sized unsigned integer, range is 0 . . . 2prec − 1

bool Boolean (true, false)

float Floating-point value (minimal range : −1.1038 . . .+ 1.1038)

Table 2.1: CAPH scalar types

bool && || not (logical and, or, not)

int + - * / mod

signed < <= = >= >

unsigned

signed land lor lnand lnot (bitwise operations)
unsigned <<, >> (left/right logical shift)

float +. -. *. /.

=. !=. <. >. <=. >=.

Table 2.2: Builtin operations on scalar types

2.2.2 Structured types

Two categories of structured types are currently supported : arrays and variants.

Arrays are indexed collections of values of the same type. The corresponding type, array, is
predefined in CAPH. Arrays can have one, two or three dimensions :

• for 1D arrays, each item has a scalar type,

• 2D arrays are viewed as arrays of 1D arrays4,

• 3D arrays are viewed as arrays of 2D arrays5.

For each dimension, the size S is fixed and must defined at the declaration. Indexes range from 0 to
S − 1.

Arrays can be declared either as global constants or as local variables in actors (Table 2.3). In the
first case, the (immutable) value of the array is part of the declaration and an optional type signature
can be used to refine the type of the array items. In the second case, the type signature is not optional
but the initial value can be omitted6. Two syntaxes – extension and comprehension – are provided for
specifying initilisation values.

Individual array items can be accessed for reading and updating using the classical [.] notation
(Table 2.4).

Variants allow values of different kinds to be mixed together in a common type by tagging them
with a distinct label. They are described in Sec. 2.4.1.

2.2.3 Translation to SystemC and VHDL types

Table 2.5 describes how CAPH types are translated to SystemC or VHDL types by the compiler back-
ends.

4And for this reason, sometimes called 1D×1D arrays.
5And for this reason, sometimes called 1D×1D×1D arrays.
6It is the progammer’s responsability, of course, to ensure that no element of the array will be accessed before having

been properly initialized.

14

const <id> "=" <array init> [":" <array type>] global constant
var <id> ":" <array type> ["=" <array init>] local variable
where
<array init> ::=

<array ext1> 1D extension
<array ext2> 2D extension
<array ext3> 3D extension
| "[" <expr> "|" <index range> "," ..., "," <index range> comprehension

<array ext1> ::=

| "[" <scalar const> 1 "," ... "," <scalar const> n "]"

<array ext2> ::=

| "[" <array ext1> 1 "," ... "," <array ext1> n "]"

<array ext3> ::=

| "[" <array ext2> 1 "," ... "," <array ext2> n "]"

<index range> ::=

| <id> "=" <index 1> "to" <index 2>

and
<array type> ::=

<scalar type> "array" "[" <size> "]" 1D array
<scalar type> "array" "[" <size> "]" "[" <size> "]" 2D array
<scalar type> "array" "[" <size> "]" "[" <size> "]" "[" <size> "]" 3D array

Examples
var a : signed<4> array[4]

var b : unsigned<8> array[4] = [1,2,3,4]

var c : unsigned<8> array[4] = [i*2 | i=0 to 3]a

const a1 = [1,2,3,4] : signed<4> array[4]

const a2 = [[1,2],[3,4],[5,6]] : signed<4> array[3][2]

const a3 = [[[1,2],[3,4]],[[5,6],[7,8]]] : signed<4> array[2][2][2]

Table 2.3: Array declarations

aThis is equivalent to var c : unsigned<8> array[4] = [0,2,4,6]

<array id>"["<index expr>"]" for 1D arrays
<array id>"["<index expr>"]" "["<index expr>"]" for 2D arrays
<array id>"["<index expr>"]" "["<index expr>"]" "["<index expr>"]" for 3D arrays
where
<index expr> is any expression of type int

Examples
t[1]

t[2*i+1]

t[i][j]

t[i][j][2]

Table 2.4: Array expressions

15

CAPH SystemC VHDL

bool bool boolean

int int signed<prec-1 downto 0>

signed<prec> sc int<prec> or inta signed<prec-1 downto 0>

unsigned<prec> sc uint<prec> or unsigned intb unsigned<prec-1 downto 0>

float floatc float32

t array[sz]d std::array<t’,sz> array (0 to sz-1) of t’

where t’ is translation of type t

t array[sz][sz’]e std::array<std::array<t’,sz>,sz’> array (0 to sz-1) of array (0 to sz’-1) of t’

where t’ is translation of type t

tf class . . . g std logic vector<m+n>

where
m = dlog2Nce
n = maxi=1...Nc |τi|
Nc is the number of distinct tags
τi is the type of argument for tag i
|τ | is size (in bits) of the VHDL representation for type τ
The m MSBs are used to encode the tag.

The n LSBs are used to encode the argumenth

Table 2.5: Translation of types in SystemC and VHDL

aDepending on whether prec resolves to a static constant or not.
bDepending on whether prec resolves to a static constant or not.
cC native float type (32 bits)
dWhere t is a scalar type.
eWhere t is a scalar type.
fWhere t is a variant type.
gSee chapter 14.
hSee chapter 14.

In VHDL, Tokens circulating between actors are represented as std logic vectors and numeric
values are represented using the signed or unsigned data types defined in the ieee.numeric std li-
brary7. Booleans are encoded as VHDL booleans. Floating-point values are currently encoded using the
float32 type provided by the VHDL-2008 Support Library available at http://www.vhdl.org/fphdl8.

2.3 CAPH expression language

The expression language is a small, purely functional, first-order, polymorphic language with a strict
semantics. This language is used both for defining the values assigned to global constants and functions
at the declaration level and the values computed when a rule is fired at the actor level. Its syntax
broadly follows that of Caml [2].

The expression language cannot manipulate functions as values, like in classical, higher-order func-
tional languages. This makes sense since this concept cannot be translated, in general, into hardware.

7There’s a compiler option to change the default library used for implementing arithmetic operations.
8This should be viewed as a temporary solution, before the full VHDL-2008 standard is supported by mainstream

VHDL compilers and synthetizers. Support for floating-point values can be disabled if this library cannot be installed on
the target platform.

16

2.3.1 Constants

Constants at the expression-level are simple constant values covering the basic CAPH types (integers
and booleans). By default, integer constants are un-signed and un-sized. Signness and size can be
provided using the type coercion operator ”:” (see Sec 2.3.6). Signness can also specified using the U

and S suffixes or implicitely for negative ints.

Example� �
23 −− g e n e r i c i n t
23S −− s i gne d i n t
23U −− unsigned i n t
−12 −− s i gned i n t
(1 2 : unsigned<4>) −− s i z e d , unsigned i n t
(1 2 : s igned<8>) −− s i z e d , s i g ned i n t
t rue −− boo lean
0xFA −− hex cons tant
0b1001 −− b inary cons tant
1 .23 −− f l o a t cons tant
−2.3 −− f l o a t cons tant� �

Type coercion can be used to define constants with a more precise type (see Sec 2.3.6).

2.3.2 Variables

Variables appearing at the expression level are simple identifiers. These identifiers must have been
bound at the declaration layer or with an upper let declaration within the same expression. Identifiers
must start with a lowercase letter (symbols starting with an uppercase letter are used to designate data
constructors).

2.3.3 Function application

Functions are always fully applied at the expression level9. The applied function must have been
declared in the declaration layer or be a builtin primitive. Application of builtin primitives uses the
classical infix notation.

Example� �
g (3) −− g i s f u n c t i o n wi th a r i t y 1
f (1 , 2) −− f i s f u n c t i o n wi th a r i t y 2
1+2 −− + i s a b u i l t i n p r i m i t i v e� �
2.3.4 Conditionals

Conditional expressions always have two alternatives, depending on the value of the discriminating
expression is (true or false).

Example� �
i f x>1 then x−1 e l s e x� �

9This is to be contrasted to functions defined at the network level, where higher-order functions and partial application
are supported.

17

2.3.5 Local Declarations

Local declarations are used to bind variable(s) to expression(s) within the (limited) scope of a given ex-
pression. The names introduced by the bindings are only visible within the target expression. Bindings
are evaluated before the target expression is evaluated.

Example� �
l et x=1+2 in x∗x −− e x p r e s s i o n v a l u e i s 9
l et x=1+2 and y=3∗4 in x+y −− e x p r e s s i o n v a l u e i s 15� �

Local declarations can be nested. This offers a way for “breaking” complex computations and/or
sharing intermediary results.

Example� �
l et y=2∗x+1 in let z=y∗y−5 in z /4� �
The previous example is equivalent to writing ((2*x+1)*(2*x+1)-5)/4.

2.3.6 Type coercion

The expression language has a builtin operator (:) for performing type coercion. Type coercion is
often necessary to assign values a more “precise” type than that infered by the type checker in order
to provide the compiler back-ends enough information.

Example� �
(1+2 : unsigned<8>)� �

Here the type inferred by the type-checker for the mere expression 1+2 is simply the generic type
int10. This type is here explicitely refined to unsigned<8>11.

The coercibility relation between base types is described in Table 2.6. A S at intersection of row t

and column t’ means that type t can be safely coerced to type t’ (with no loss of information); a U
(unsafe) indicates that some information may be lost and a F indicates a forbidden operation.

This relation naturally extends to structured types with the same constructor and the same number
of elements. For example, type t array[m] can be coerced to t’ array[n] iff m=n and t can be coerced
to t’.

Coercion between integer types is only accepted in two situations:

1. it corresponds to a “refinement” of the LHS type. Examples :

• (int<8>:unsigned<8>) is ok,

• (int:unsigned<8>) is ok,

• (signed<n>:signed<16>) (where n is an unbound size variable) is ok,

• (unsigned<8>:int) is forbidden,

• (signed<8>:signed<n>) (where n is an unbound size variable) is forbidden12.

2. it corresponds to a modification of an already known signness or size. Examples

10In fact, this is int<s,n> where s and n are respectively a sign variable and a size variable. The notion of type
variable is discussed in Sec. 2.4.5.

11Where unsigned<8> is actually an abbreviation for int< unsigned,8>.
12The known size 8 cannot be “erased”.

18

bool int signed<n> unsigned<n> float

bool S S1 S1 S1 S1

int U2 S S S S

signed<m> U2 F U3 U4 S

unsigned<m> U2 F U5 U3 S

float U2 U7 U7 U7 S

Table 2.6: Type casting between base types

atrue is translated to 1, false to 0.
b0 is translated to false, all other values to true.
cTruncature may occur if m > n
dSign is lost. Truncature may occur if m > n
eTruncature may occur if m > n− 1
fSome loss of precision may occur
gThe fractional part is discarded. Truncature may occur

If value v has type. . . v‘size gives. . .
bool 1
int<prec> <prec>

signed<prec> <prec>

unsigned<prec> <prec>

float 32
t array[sz] sz

τ1 × . . .× τn n

Table 2.7: Interpretation of the size attribute

• (signed<8>:signed<16>) is ok

• (signed<8>:unsigned<8>) is ok (but the sign is lost),

• (unsigned<16>:unsigned<8>) is ok (but the result may be truncated).

The compiler accepts coercions of the first kind silently and emits a warning for the second kind when
the signness/sizes of the LHS and RHS is/are different.

2.3.7 Attributes

An attribute is a property which can be attached to certain types of value. Examples are the size
(number of elements) of an arrays or the width (in bits) of an integer value.

Attribute values can be retrieved using the following syntax : <value_name>‘<attribute_name>.

A typical use is of attributes is for initializing arrays :

Example� �
var z : array [8] = [0 | i=0 to z ‘ s i z e −1]� �

The current version of the compiler only supports one kind of the attribute, named size. The
meaning of this attribute directly depends on the type of the value to which it is attached. Table 2.7
gives its interpretation for all CAPH builtin types13.

13The value of the size attribute is undefined for user-defined types.

19

2.4 CAPH declaration language

This is the outermost layer. A CAPH program is just a sequence of declarations, which are evaluated
sequentially (in other words, the declaration of an object may refer to objects declared before but
not the other way). Declarations concerns declares types, global values (constant and functions), I/O
streams, actors and network-level objects (wires and wiring functions).

2.4.1 Type declarations

There are two kinds of type declarations : type synonym declarations and variant declarations.

Type synonym declarations are used to introduce abbreviations to existing types. For example,
the following declaration defines a type byte which is a synonym to the builtin type unsigned<8> :

Example� �
type byte == unsigned<8>; −− b y t e i s now a synomym f o r unsigned<8>� �

Variant declarations are used to define algebraic data types. These types – also called tagged
unions – allow values of different types to be mixed together by tagging them with a distinct label.
Consider for example the situation in which a token can carry either a signed or unsigned 8-bit value.
A type for this kind of tokens could be defined with the following type declaration :� �
type us8 =

Signed of s igned<8>
| Unsigned of unsigned<8>� �
This declaration introduces the type constructor us8. A value of type us8 is either a signed<8>

value or a unsigned<8> value. The associated tag (Signed or Unsigned) is used to distinguish between
these two cases.

More generally speaking, the declaration of a variant type lists all possible “shapes” for values of
that type. Each case is identified by a specific tag, called a value constructor, which serves both for
constructing values of the variant type and inspecting them by pattern-matching (see Sec. 2.4.4 for
examples). Value constructors can take 0 to n arguments14. To distinguish them from variable names
– which start with a lowercase letter – they must start with a capital letter.

Type constructors can be polymorphic, i.e. they can be parameterized over (an)other type(s), called
the argument types(s) (see Sec. 2.4.5). For example, here’s a definition of a type for representing optional
values (i.e. values that can be either present or absent) :

Example 1� �
type $t opt ion =

Absent
| Present of $t� �

A value of type τ option is either Absent or Present v, where v is a value of type τ and τ can be
any type.

The following definition introduces a type for representing optionally labeled values :

14Since version 2.6.2. In previous versions only nullary and unary value constructors were supported.

20

Example 2� �
type ($t1 , $t2) l a b e l e d =
| Unlabeled of $t1
| Labeled of $t1 ∗ $t2� �

A value of type (τ, λ) labeled is either Unlabeled v, where v is a value of type τ or Labeled (v,l)

where v is a value of type τ and l a value of type λ. As above, τ and λ can be any type.

When an variant type involves sized integers, it can be parameterized over the corresponding sizes.
The size parameters are then specified by listing them, between < and > after the name of the type
constructor15 For example, the type us8 introduced above could be generalized as follows : matter� �
type us<n> =

Signed of s igned<n>
| Unsigned of unsigned<n>� �
The type us can now be used to represent values having type signed<n> or unsigned<n>, where n

can be any possible value.

The two kinds of polymorphism (type and size) can appear in the same declaration. Here’s for
example the declation of a type tau whose values are either a signed integers with size n or values of
type t :� �
type $t tau<n> =

Lef t of s igned<n>
| Right of $t� �
The CAPH standard library defines (in lib/caph/dc.cph) the following type16 :

type $t dc =
Data of $t

| SoS
| EoS

The dc type (abbreviation for data/control) can be used to encode structured streams, i.e. streams
in which the sequence of tokens obeys to a certain structure (as opposed to “raw” streams in which the
only structure is the order in which tokens appears). Consider for example the stream representing a
(potentially infinite) sequence of n×n images. Representing this sequence as a simple stream of tokens,
where each token carries a pixel value is generally not sufficient. Most often, actors operating on this
stream will need to detect the start and end of a single image in this stream and the start and end of
individual lines in this image. This need to structure the stream of tokens can be served by dividing
the tokens, circulating on channels and manipulated by actors, into two broad categories : data tokens
(carrying actual values) and control tokens (acting as structuring delimiters). For the aforementionned
example, one could therefore introduce the following type to represent sequences of images :

Example� �
type $t image =

15This “hybrid” approach, in which type parameters are specified using a prefix notation and size parameters using a
postfix notation may appear awkward to programmers familiar to purely prefix (OCaml, for example) of purely postfix-
based (C++, for example) notations. It has been chosen because different trials have shown us that the other choices
actually led to slightly more verbose formulations to avoid parsing ambiguities.

16This type was builtin in versions prior to 2.6.2.

21

| SoI −− S t a r t o f image
| EoI −− End o f image
| SoL −− S t a r t o f l i n e
| EoL −− End o f l i n e
| Data of $t −− P i x e l� �
Tokens with values SoI, EoI, SoL and EoL will be control tokens indicating the start and end of

images (resp. lines) and pixels will be carried by tokens having values Data v. With the scheme, the
4× 4 image of Fig. 2.1 may be represented by the following stream of tokens:

SoI, SoL, Data(10), Data(30), Data(55), Data(90), EoL,

SoL, Data(33), Data(53), Data(60), Data(12), EoL,

SoL, Data(99), Data(56), Data(23), Data(11), EoL,

SoL, Data(11), Data(82), Data(46), Data(11), EoL, EoI

But it turns out that the type introduced above is sufficient for performing this encoding of images
as structured streams. The idea is that an image can viewed as a list of lines, where each line can in
turn be viewed as a list of pixels. For this, the SoS (resp. EoS) is interpreted as a start of list (resp.
end of list) control token, and the 4× 4 image of Fig. 2.1 is now represented by the following stream of
tokens:

SoS, SoS, Data(10), Data(30), Data(55), Data(90), EoS,

SoS, Data(33), Data(53), Data(60), Data(12), EoS,

SoS, Data(99), Data(56), Data(23), Data(11), EoS,

SoS, Data(11), Data(82), Data(46), Data(11), EoS, EoS

The advantage17 is that any kind of data structure can be represented this way : images, lists, but
also trees, etc., without requiring dedicated types.

Moreover, this structured representation of data nicely fits the stream-processing programming
and execution models. Since the structure of the data is explicitly contained in the token stream no
global control and/or synchronization is needed; this has strong and positive consequences both at
the programming level (it justifies a posteriori the style of description we introduced in the previous
subsection for actors) and the execution level (it will greatly eases the production of HDL code).
Moreover, it naturally supports a pipelined execution scheme; processing of a line by an actor, for
example, can begin as soon as the first pixel is read without having to wait for the entire structure to
be received; this feature, which effectively allows concurrent circulation of successive “waves” of tokens
through the network of actors is of course crucial for on-the-fly processing (like in real-time image
processing).

10 30 55 90

33 53 60 12

99 56 23 11

11 82 45 11

Figure 2.1: A 4× 4 image

17Which has probably not escaped to programmers familiar with the Lisp language. . .

22

2.4.2 Value declarations

There are two types of value declarations : constants and functions.
Identifiers bound in these declarations scope over both the actor and network sub-languages, but an

important distinction must be made.
At the actor level, they can appear everywhere in the expressions defining the behavior of actors

(in the right-hand side of actor rules – see Sec. 2.4.4). As a matter of fact, global functions are often
used to improve the readability of actors, by allowing a separation between purely combinational and
sequential aspects.

At the network level, they can only appear as parameters when an actor is instanciated (see Sec 2.4.7)
and cannot be used to define network-level expressions.

Constant declarations

Constant declarations are like #define declarations in C. They give a name to a value which is computed
statically. They are typically used to define application-specific parameters.

Example� �
const th r e sho ld = 1+2; −− s c a l a r cons tant
const ke rne l = [1 , 2 , 1] ; −− 1D array cons tant
const k e r n e l s = [[1 , 2 , 1] , [1 , 4 , 1]] ; −− 1Dx1D array cons tant� �
Function declarations

Function declarations introduce functions, mapping an identifier (or a set of identifiers) to an expression.
Functions with several arguments are represented as functions taking a tuple. An optional type signature
can be specified to refine the type of the function.

Example� �
function i n c r x = x+1;
function s c a l e (x , s) = x∗ s : s igned<8> ∗ s igned<8> −> s igned <16>;� �
External function declarations

External functions declarations introduce functions which are defined outside the CAPH language.
Their main usage is to allow the SystemC or VHDL generated code to make use of pre-existing functions
already written in these languages. The type of the corresponding function must be supplied. For the
corresponding program to be simulated, a Caml implementation of the function must also be provided18.

Example� �
function s q r t x =

extern ” sqrt c ” ,” sqrt vhd ” ,” sqrt ml ” : unsigned<16> −> unsigned<16>;� �
In the above example, sqrt c, sqrt vhd and sqrt ml are the names of the C, VHDL and Caml

implementations of the sqrt CAPH function19. These functions are supposed to be defined in a file
accessible when compiling the code generated by the back-ends. For the ML function, it must be defined
in a specific file and registered using a dedicated function. The mechanism is detailed in Chap. 12

18It could be possible to interface the simulator directly to the C code but this is not currently implemented. Hence
the necessity to provide the Caml version of the function.

19We have used three different names but in practice, the same name can be used for the three implementations.

23

Its the programmer’s responsability to ensure that the actual types of the function arguments and
result are compatible with the types specified in the declaration. There’s currently no specific type-
based translation mechanism for foreign values. As a result, only functions whose arguments and result
can be safely coerced to integers are supported.

2.4.3 I/O declaration

These declarations specify the way by which the application will interact with the operating system
(during simulation) or the physical devices (for the generated VHDL code for example).

Two types of I/Os are supported : streams and ports.

Streams are used to model pure data flows, in which tokens are read (resp. written) from (resp. to)
a sequential source (resp sink) using a fifo-like protocol.

Ports are used to model “asynchronous” I/Os, in which values are read (resp. written) using a
RAM-like interface.

Both types of declarations specify a name, a type, a direction (input or output) and a “device”.
The device is a system-specific designator identifying the entity the input (resp. output) data will be
read from (resp. written to). When using the simulator, designators will be simple file names. The
SystemC and VHDL backends may use more system and platform specific designators. For port inputs,
the declaration also specify an initial value20.

Example� �
stream inp1 : unsigned<8> from ” sample . txt ” ;
stream outp : s igned<8> to ” d i s p l a y : 0 ” ;

port inp2 : unsigned<16> from ” th re sho ld . txt ” in i t 64 ;
port inp3 : s igned<8> in i t −1;
port outp2 : boolean to ” acks . txt ” ;� �
2.4.4 Actor declarations

Each actor involved in the dataflow process network must be declared. The declaration comprises an
interface (which is the only visible part at the network level) and a body, describing its behavior.

Actor interface

The interface specifies the actor input(s), output(s) and optional parameter(s). All inputs, outputs and
parameters are typed. When building the network, inputs and outputs will be connected to channels
and parameters will be given values.

Example� �
−− This ac t or has one input , o f type int , one output , o f type b o o l and no

parameter

actor a1
in (x : i n t)

out (y : bool)
−− . . . a c to r body . . .� �
20For port inputs, the device can be omitted; in this case the port behaves as a constant generator.

24

Example� �
−− This a c to r has two inputs , both o f type s igned <8>, one output , o f type

signed<8> and one parameter , o f type unsigned<4>

actor a2 (k : unsigned<4>)
in (e1 : s igned<8>, e2 : s igned<8>)

out (s : s igned<8>)
−− . . . a c to r body . . .� �

Actor body

The actor body comprises a set of local variable declarations and a set of transition rules.

The set of local variable declarations can be empty. Each variable is declared with a name, a
type and an optional initial value. Variables are used to retain values between successive activations of
the actor. Their scope is limited to the actor they are defined in.

In addition to the types defined in Sec. 2.2, local variables can also have an enumerated type. Two
kinds of enumerated type are accepted : explicit enumerations and integer ranges.

Explicit enumerations are actually variant types for which all constructors have arity 0.

Example� �
actor . . .

. . .
var s t a t e : { S0 , S1 , S2 }
. . .� �

Declaring a local variable with such a type de facto introduces a new type but the corresponding
type constructor is anonymous and the scope of the introduced data constructors (S0, S1, . . .) is limited
to the englobing actor21.

Integer ranges may be viewed as a subset of the int type.

Example� �
actor . . .

. . .
var c t r : { 1 , . . , 8 } ;
. . .� �

A variable with such a type can be used in any expression in which an int can be accepted. The
main distinction is that it will be recognized as a potential state variable when performing abstract
interpretation or FSM dumping (see Sec. 10.10 and chapter 8).

The behavior of an actor is specified using a set of transition rules.
Each rule consists of a set of patterns, involving inputs and local variables, and a set of expressions,

describing modifications of outputs and/or local variables.
Each rule has the form

| (qual1 : pat1, . . . , qualm : patm)→ (qual’1 : exp1, . . . , qual’n : expn)

21This feature was introduced precisely to avoid name conflicts that frequently arise if one has to declare global type
and data constructors for locally defined values such as state variables.

25

where

• qual designates an input, a scalar variable or an element of an array variable,

• pat is a pattern,

• qual′ designates an output, a scalar variable or an element of an array variable,

• exp is an expression.

Parens can be omitted if m = 1 (resp. n = 1).

A pattern can be

• a litteral constant22 (ex: 0, true, . . .),

• a variable,

• a constant constructor (SoS, EoS, or any nullary constructor introduced by an enumerated type
or a variant type declaration),

• C p, where

– C is a constructor with arity 1 (Data or introduced by a variant type declaration)

– p is a pattern,

• the “ ” symbol

A pattern refers to an input or a local variable, the name of which is given by the attached qualifier.

An expression can be

• any expression of the expression language defined in Sec. 2.3,

• the “ ” symbol

An expression refers to an output or a local variable, the name of which is given by the attached
qualifier.

Identifiers appearing within right-hand side expressions of a rule can refer to

• variables introduced by patterns in the corresponding left-hand side,

• parameters of the defined actor,

• local variables of the defined actor,

• global variables.

Example� �
actor f oo in (i : i n t) out (o : i n t)
var v : bool
rules
| (i : x , v : t rue) −> o : x+1
| (i : x , v : f a l s e) −> o : x−1;� �

22Constants defined in value declaration section (see Sec. 2.4.2) are not allowed, or, more precisely, they will be
interpreted as a variable pattern, which is generally not what is expected.

26

In this example, we have two rules. Each rule depends on the value of the input i and the local
variable v and affects the output o. The patterns for the first (resp. second) rule are x and true (resp.
x and false). These patterns will match any configuration in which a token is present on input i (with
a value x) and the local variable v has value true (resp. false). The expression for the first (resp.
second) rule writes the value x+1 (resp. x-1) to the output o.

Example� �
actor bar in (i : i n t) out (o : i n t)
var s : i n t = 0
rules
| i : x −> (o : x+s , s : s+1)� �

In this second example, the pattern of the rule will match any configuration in which a token is
present on input i. The corresponding expressions will write the sum of the value of this token and the
value of the local variable s to the output o and increment the local variable s.

Variant syntax for rules. When the rule section of actor contains several rules involving similar
qualifiers for patterns and expressions, it is possible to simplify the formulation of these rules by prefixing
them by a rule format and omitting the individual qualifiers on patterns and expressions. A rule format
has the form

(qual1, . . . , qualm)→ (qual’1, . . . , qual’n)

where qual (resp. qual′) designates an input (resp. output), a scalar variable or an element of an
array variable. This rule format tells to which input (resp. output, variable or array element) the
corresponding23 item of all the subsequent rules refers. As for rules themselves, the parens can be
omitted when m = 1 (resp. n = 1).

For example, the actor foo introduced above can be reformulated as

Example� �
actor f oo in (i : i n t) out (o : i n t)
var v : bool
rules (i , v) −> o
| (x , t rue) −> x+1
| (x , f a l s e) −> x−1;� �

Both formulation – individual qualifiers within rules or general rule format – are strictly equivalent24.
In this manual, we will freely use one or the other.

Semantics of rules. At each execution cycle25, a fireable rule is searched. A rule is fireable if
the actual values of the inputs and local variables match the rule pattern and if the rule expression
produces values that can be written to the involved outputs. The choice of the rule to be fired is done
by sequential pattern-matching (in other words, the first rule is tried, then the second, etc. If no rule
is fireable, the actor waits for the next execution cycle).

The special pattern “ ” means ”ignore” for inputs (i.e. don’t even read the input) and ”don’t care”
for local variables.

The special expression “ ” means ”ignore” (i.e. don’t write the output) for outputs and ”don’t
modify” for local variables.

23Where correspondance is established by position.
24In fact, the compiler front-end translates the latter into the former.
25The precise notion of execution cycle is defined by the dynamic semantics in chapter 7.

27

Examples

We now give several complete examples of actors to illustrate to concepts and notations introduced in
the previous section.

Listing 2.1:� �
actor double in (i : i n t) out (o : i n t)
rules
| i : x −> o : x ∗2 ;� �

This actor defined in listing 2.1 ressembles the inc and dec actors introduced in Sec 1.3.1. It has
one input and one output, of type int, no parameter and no local variable. There’s only one rule, which
says : whenever a token is available on input i, read it, bind the corresponding value to x, evaluate
expression x*2 and write the resulting value to output o. In effect, this actor will therefore doubles
each value of the input stream : inc:1,2,3,... = 2,4,6,...

Listing 2.2:� �
actor s c a l e (k : i n t) in (i : i n t) out (o : i n t)
rules
| i : x −> o : k∗x ;� �

The actor defined in listing 2.2 is a generalization of the previous one. It multiplies each value of
the input stream by a constant factor. The factor is a parameter. Its value will be specified when the
actor will be be instanciated (at the network level).

Listing 2.3:� �
actor mux in (i 1 : int , i 2 : int , s e l : bool) out (o : i n t)
rules (s e l , i1 , i 2) −> o
| (true , v1 , v2) −> v1
| (f a l s e , v1 , v2) −> v2 ;� �

The actor in listing 2.3 is a multiplexer : it routes its first (i1) or second (i2) input to its output
(o) according to the value of its third input (sel). For example, if i1=1,3,5,..., i2=2,4,6,...,
sel=true,true,false,..., then o=1,3,6,.... Note that a token must be present on each input for
the actor to fire and that a token is consumed on each of these inputs at each firing. Using the “ ”
pattern, it is possible not to consume the unselected input, as described in listing 2.4. In this case,
for i1=1,3,5,..., i2=2,4,6,... and sel=true,true,false,..., we have o=1,3,2,... (the tokens
accumulate on the channel connected to i2).

Listing 2.4: A variant of the actor described in listing 2.3� �
actor mux bis in (i 1 : int , i 2 : int , s e l : bool) out (o : i n t)
rules (s e l , i1 , i 2) −> o
| (true , v1 ,) −> v1
| (f a l s e , , v2) −> v2 ;� �

The actor mux can also be described with a single rule, using a if expression26, as shown in listing 2.5.

Listing 2.5: Another formulation of the actor described in listing 2.3� �
actor mux ter in (i 1 : int , i 2 : int , s e l : bool) out (o : i n t)

26But the actor mux bis cannot !

28

rules (s e l , i1 , i 2) −> o
| (s , v1 , v2) −> i f s then v1 e l s e v2 ;� �

Listing 2.6:� �
actor sum in (i : i n t) out (o : i n t)

var sum : i n t = 0
rules
| i : v −> (o : sum , sum : sum+v) ;� �

The actor in listing 2.6 is a integrator : it produces the running sum of the values present on the
input stream. For example, if i=1,2,3,4,..., then o=0,1,3,7,.... For this is uses a local variable
sum. The single rule says : whenever a token is available on input i (with value v), writes the current
value (v) of sum to output o and add v to sum.

Listing 2.7:� �
actor switch

in (i : i n t)
out (o1 : int , o2 : i n t)
var s : bool = f a l s e
rules (s , i) −> (o1 , o2 , s)
| (f a l s e , v) −> (v , , t rue)
| (true , v) −> (, v , f a l s e) ;� �
This actor in listing 2.7 is the dual of the merge actor introduced in Sec. 1.3.2. It reads tokens on

its input channel and alternatively routes them to its first (“left”) and second (“right”) output. Given
the stream 1,2,3,4,... it will produce the stream 1,3,... (resp. 2,4,...) on its output output o1
(resp. o2). Here, the ’ ’ symbol used in the right-hand side of a rule means that no value is produced
on the corresponding output channel.

Note : the previous actor can be rewritten in a slightly more self-documenting manner using an
enumerated type for variable s, as shown in listing 8.3.

Listing 2.8:� �
actor switch bis

in (i : i n t)
out (o1 : int , o2 : i n t)
var s : {Left , Right} = Lef t
rules (s , i) −> (o1 , o2 , s)
| (Left , v) −> (v , , Right)
| (Right , v) −> (, v , Le f t) ;� �

Listing 2.9:� �
actor i n c r

in (a : i n t dc)
out (c : i n t dc)
rules a −> c
| SoS −> SoS
| EoS −> EoS
| Data v −> Data (v+1) ;� �

29

The actor in listing 2.9 increments a structured stream of values, as evidenced by the type of its
input and output, int dc (see Sec. 2.4.1). Given the structured stream

SoS, Data 1, Data 2, Data 3, EoS

on its input, it will produce the structured stream

SoS, Data 2, Data 3, Data 4, EoS

on its output. Here pattern-matching is used to discriminate between control and data tokens. The
rules can be read as follows : if input is a control token (SoS or EoS) then write the same token on
output; if input is a data token, increment the carried value and write the resulting data token on
output.

Note. For convenience, the SoS, EoS and Data constructors may be abbreviated as ’<, ’> and ’

respectively. The actor of listing 2.9 can therefore be rewritten in a slightly more concise manner as
shown in listing 2.10

Listing 2.10: A rewriting of listing 2.9� �
actor i n c r b i s

in (a : i n t dc)
out (c : i n t dc)

rules a −> c
| ’< −> ’<
| ’> −> ’>
| ’ v −> ’ (v+1) ;� �

Listing 2.11:� �
actor suml

in (i : i n t dc)
out (o : i n t)

var s t a t e : {S0 , S1} = S0
var sum : i n t = 0
rules
| (s t a t e : S0 , i : SoS) −> (sum : 0 , s t a t e : S1)
| (s t a t e : S1 , i : EoS) −> (o : sum , s t a t e : S0)
| (s t a t e : S1 , i : Data v) −> (sum : sum+v) ;� �
The actor in listing 2.11 operates on a structured stream composed of a sequence of lists, each list

starting with a SoS token and ending with a EoS token. For each list, it computes the sum of the
elements. For example, if i=<,1,2,3,>,<,4,5,>,<,6,7,8,>,..., then o=6,9,21,.... For this, it
uses pattern matching on the input to detect the start and end of each list and two local variables : a
local state (state), indicating whether the actor is waiting for a new list or computing the sum, and a
accumulator (sum) for computing the sum. The three transition rules can be read as follows :

• if we are in state S0 and input token is “<”, then initialize sum to 0 and go to state S1;

• if we are in state S1 and input token is “>”, then writes the accumulated sum to output and go
back to state S0;

• if we are in state S1 and input token is a data, then add the corresponding value to the accumulator.

30

Note that the actor blocks if the input stream is ill-formed (for example, if i=<,1,2,<,...).

Listing 2.12:� �
type $t opt ion =

Absent
| Present of $t
;

actor count
in (a : s igned<8> opt ion)
out (c : s igned<8>)

var s : s igned<8> = 0
rules
| a : Absent −> c : s
| a : Present x −> (c : s+x , s : s+x)
;� �

Listing 2.12 illustrates the declaration and use of user-defined variant types. The count actors
produces the running sum of optional values, represented with the option type. When the input token
is Present v the value v is added to the current sum s. When the input token is Absent the current
sum s is unchanged. In both cases, the current sum is output. For example, if the token stream on
input a is

Present(1), Absent, Present(5), Absent, Absent, Present(9)

then the token stream on output c will be

1, 1, 6, 6, 6, 15

Listing 2.13:� �
type us8 =

Signed of s igned<8>
| Unsigned of unsigned<8>
;

actor add
in (a : us8 , b : us8)

out (c : us8)
rules
| (a : Signed s1 , b : Signed s2) −> c : Signed (s1+s2)
| (a : Signed s , b : Unsigned u) −> c : Signed (s+(u : s igned<8>))
| (a : Unsigned u , b : Signed s) −> c : Signed ((u : s igned<8>)+s)
| (a : Unsigned u1 , b : Unsigned u2) −> c : Signed ((u1 : s igned<8>)+(u2 : s igned

<8>))
;� �

Listing 2.13 shows how to define an actor performing ”mixed” (signed/unsigned) arithmetic using
a variant type. The add actor accepts both signed and unsigned 8-bit values and produces a sum as a
signed 8-bit value, performing type coercion as needed. For example, if the input streams on inputs a

and b resp. are

31

Signed(1), Signed(2), Signed(3), Signed(-1), Signed(-2), Signed(-3), Unsigned(1), Unsigned(2),

Unsigned(3)

and

Signed(1), Signed(-1), Unsigned(2), Signed(1), Signed(-1), Unsigned(2), Signed(1), Signed(-1),

Unsigned(2)

then the output stream on c will be

Signed(2), Signed(1), Signed(5), Signed 0, Signed(-3), Signed(-1), Signed(2), Signed(1),

Signed(5)

Semantics of pattern matching

The precise semantics of rule evaluation is given in chapter 7. Basically, when a rule is selected, the
expressions given in the RHS are all evaluated in an environment containing

• builtin values,

• globally defined values,

• actor parameters,

• actor local variables,

• variables bound by pattern-matching in the corresponding LHS of the rule.

Some remarks about pattern matching :

• a given variable can only appear once in the same LHS; for example, the following formulation is
not allowed :

actor f oo in (i 1 : t , i 2 : t ’) out (. . .)
rules
| (i 1 : x , i 2 : x) −> . . .

This makes sense because a reference to variable x in the RHS would be otherwise ambiguous.

• pattern-matching a local variable against a variable is possible, but not required, because local
variable are implicitely part of the evaluation environment in the RHS; for example, the two
following formulations are semantically equivalent27 :

actor foo1 in (. . .) out (o : t)
var s : t
rules
| . . . , s : v , . . . −> . . . , o : v , . . .

actor foo2 in (. . .) out (o : t)
var s : t
rules
| . . . −> . . . , o : s , . . .

27Note however that the SystemC and VHDL backends will allocate an extra variable for the former.

32

Of course, explicit pattern matching a local variable against a constant or a structured value is
still useful.

• variables introduced by pattern matching in the LHS “shadow” actor parameters and local vari-
ables; for example, in the following example, the value written on output o when the first rule is
selected is that of input i and not of local variable s :

actor f oo in (i : t) out (o : t)
var s : t
rules
| i : s −> o : s
| . . .

Guards

A guard is a boolean expression, the value of which is added to the conditions which are taken into
account to decide whether a rule is fireable or not. More precisely, a rule containing a guard would be
marked as fireable if :

• the actual values of the inputs and local variables match the rule patterns and

• the value of the guard expression is true and

• the involved outputs are writable.

In the current version, guards can only refer to inputs or variables appearing in the patterns of the
corresponding rule or to actor parameters.

Guards do not modify the order in which rules are scanned, which is still sequential.

Example� �
actor thr (k : s igned<8>)

in (a : s igned<8>)
out (c : unsigned<1>)

rules a −> c
| p when p > k −> 1
| p −> 0
;� �

The thr actor binarizes a stream of values by comparing each of them to a given theshold (set as a
parameter). For example, given the input stream 1,8,2,18, the actor thr(4) will produce the output
stream 0,1,0,1. This actor could be written without guard with a simple conditionnal :

Example� �
actor thr bis (k : s igned<8>)

in (a : s igned<8>)
out (c : unsigned<1>)

rules a −> c
| ’ p −> i f p > k then 1 e l s e 0
;� �

33

IO-less actors

It is possible to define actors with no input port and/or no output. Actors with no input may be
used, for instance, as data sources and actors with no output as data sinks. Two examples are given in
Listings 2.14 and 2.15 respectively.

For the src actor, defined in Listing 2.14, the type of the input i, unit, indicates that the actor
actually has no input28. The “_” pattern for i in the firing rule here means that no value is requested for
the rule to fire. The src actor therefore produces the following stream on its output : 0, 1, 2,

For the snk actor, defined in Listing 2.15, the type of the output i, unit again, indicates that the
actor actually has no output. This actor reads a stream of integers on its input and sum the values in
its local variable sum29.

Listing 2.14: Example of input-less actor� �
actor s r c

in (i : un i t)
out (o : i n t)

var cnt : i n t = 0
rules
| i : −> (o : cnt , cnt : cnt+1)
;� �

Listing 2.15: Example of output-less actor� �
actor snk

in (i : i n t)
out (o : un i t)

var sum : i n t = 0
rules
| i : x −> sum : sum+x
;� �
2.4.5 Polymorphism

The ability of define polymorphic actors and functions is an important feature of the CAPH language.
Coupled with the concept of higher-order wiring functions, described in Sec. 2.4.7, it allows in particular
highly generic solutions to be described and reused in a large variety of contexts.

Basically, a polymorphic actor (resp. function) is an actor (resp. function) for which the type of
inputs or outputs (resp. arguments and result) is left unspecified at definition. This implies that the
behavior of this actor (resp. function) does not depend on the actual value of this type. This is called
parametric polymorphism30.

To illustrate the need for such a feature consider for example, the basic mux_s8 actor defined below :� �
actor mux s8

in (e1 : s igned<8>, e2 : s igned<8>, c : bool)
out (s : s igned<8>)

28The unit type can be viewed as the equivalent of the void type in C or C++.
29Since this variable is not visible outside the actor, the snk actor defined here is of little utility. In practice, output-less

actors will perform side-effects.
30By opposition to ad-hoc polymorphism – a.k.a. overloading –, where a given function, for example, may accept

arguments with different types, performing a computation which depends on the actual type of the arguments.

34

rules
| (c : true , e1 : x , e2 :) −> s : x
| (c : f a l s e , e1 : , e2 : x) −> s : x� �

This actor accepts two streams of integers and a stream of booleans. When the boolean token is
true (resp. false), it forwards the token present on the first (resp. second) input to the output,
discarding the token present on the second (resp. first) output. As defined above, this actor can only
be used to multiplex streams of signed<8> quantities. If one wants to multiplex, let say, streams of
unsigned<4> quantities, another actor must be written :� �
actor mux u4

in (e1 : unsigned<4>, e2 : unsigned<4>, c : bool)
out (s : unsigned<4>)

rules
| (c : true , e1 : x , e2 :) −> s : x
| (c : f a l s e , e1 : , e2 : x) −> s : x� �

This is clearly redundant. Having to define a new actor for each possible type for these inputs and
output is tiresome and error-prone.

In fact, the actual type of the e1 and e2 inputs and s output does not matter, since the corresponding
values are just copied from input to output.

The solution, in this case is to define a polymorphic actor mux as follows :� �
actor mux

in (e1 : $t , e2 : $t , c : bool)
out (s : $t)

rules
| (c : true , e1 : x , e2 :) −> s : x
| (c : f a l s e , e1 : , e2 : x) −> s : x� �

Here the type $t is a type variable; it stands for “any possible type t”. The actual value of this
type variable will be decided when the actor is instanciated as a box : it will be the actual type of
the input and output wires connected to the box. Note that the fact that same type variable is used
for both inputs and the output implies that the corresponding wires will be required to have the same
type (forbidding for example the instanciation of this actor as a box connected to one input of type
signed<8> and unsigned<4> for example).

Type variables may also appear in the list of parameters and local variables of an actor. Below is a
possible definition for an actor performing a one-sample delay on lists of values31 :� �
actor dl (v : $t)

in (a : $t dc)
out (c : $t dc)

var s : {S0 , S1} = S0
var z : $t
rules
| (s : S0 , a : ’<) −> (s : S1 , c : ’< , z : v)
| (s : S1 , a : ’ p) −> (s : S1 , c : ’ z , z : p)
| (s : S1 , a : ’>) −> (s : S0 , c : ’>)
;� �

31This actor is actually defined in the library list ops.cph.

35

If the input stream has type, say, unsigned<4>, and is32 :

’< ’1 ’2 ’3 ’4 ’>

then, the processing of this stream by actor d (with its parameter v set to 0) will produce the
following stream :

’< ’0 ’1 ’2 ’3 ’>

Note that this justifies a posteriori why the definition of the dc type is polymorphic.

Size variables

Sometimes, a more restricted form of polymorphism is what is needed. Consider for example an actor
performing the element-wise addition of two streams of signed integers. A possible definition of this
actor could be, for example :� �
actor add

in (a : s igned<8>, b : s igned<8>)
out (c : s igned<8>)

rules
| (a : x , b : y) −> c : x+y� �

But, again, this definition is too restrictive since a similar one should be written for signed<4>

integers, signed<10> integers, etc. One could be tempted to resort to parametric polymorphism to
“factorise out” this redundancy, writting the add actor as :� �
actor add

in (a : $t , b : $t)
out (c : $t)

rules
| (a : x , b : y) −> c : x+y� �

But this does not work since the builtin + operator, used in the right-hand-side of the rule is not
defined for any possible type τ . What is needed here is a way of abstracting over the size of the integer
arguments and result. For this, the add actor must be defined as follows :� �
actor add

in (a : s igned<s>, b : s igned<s>)
out (c : s igned<s>)

rules
| (a : x , b : y) −> c : x+y� �

Here s denotes a size variable; it stands for “any possible size s”. Like for type variables, its actual
value will be set when the add actor gets instanciated as a box.

Sign variables

From what precedes, one could deduce that the type of the + builtin function is

s igned<s> ∗ s igned<s> −> s igned<s>

32We use here the abbreviated syntax for values of type dc

36

Such a type would clearly be too restrictive because it forbids the application of this operator to
unsigned quantities. In fact, the type33 of + is

int<g , s> ∗ int<g , s> −> int<g , s>

where g is a sign variable. A sign variable is an type variable which can only take two values
: signed or unsigned. In fact the types signed<n> and unsigned<n> are just shorthands for
int<_signed,n> and int<_unsigned,n> respectively. Explicit reference to sign variables is useful when
the related actor (or function) should abstract over the signness of the manipulated integer quantities.
For example, a fully generic version of the add actor introduced above can be written as� �
actor add

in (a : int<g , s>, b : int<g , s>)
out (c : int<g , s>)

rules
| (a : x , b : y) −> c : x+y� �

Note that the signature of the add actor enforces that its inputs and output have both the same
signness and size.

This kind of signature is used largely in the CAPH standard library to define actors and wiring
functions operating both on signed and unsigned data flows (filters and convolutions for example).

Note

The notions of size and sign variables introduced above are just an special form of classical Hindley-
Millner style of parametric polymorphism34. Size variables, in particular, cannot be used to express
dependencies richer than mere equality between sizes in type signatures. Concretely, this means that
it is not possible to define actors like

s igned<s> ∗ s igned<s> −> s igned<s+1>

or

s igned<s> ∗ s igned<s> −> s igned<2∗s>

where some kind of ”computation” is allowed on type size parameters. Supporting this would require
a significantly more complex type system than actually implemented35.

Dependent types

CAPH offers a limited form a so-called dependent typing, in which the type of an actor can depend on
the value of its parameters36.

To understand why this feature is useful, consider the program given in listing 2.16 .

Listing 2.16: A small program exhibiting the need for dependent types� �
actor add

in (i 1 : unsigned<s>, i 2 : unsigned<s>)
out (o : unsigned<s>)

rules
| (x , y) −> x+y ;

33Which can be displayed by invoking the compiler with the options -dump tenv and -phantom types
34Technically speaking, the type of + or add is simply the type scheme : ∀α, β. (α, β) int× (α, β) int→ (α, β) int.
35With full-fledged dependent types and constraint-solving based unification.
36This feature, introduced in version 2.6.0, is still largely experimental.

37

stream inp1 : int<16> from ” inp1 . txt ” ;
stream inp2 : int<16> from ” inp2 . txt ” ;
stream outp : int<16> to ” r e s . txt ” ;

net outp = add (inp1 , inp2) ;� �
Now, suppose that the type network output outp – which is ultimately imposed by the hardware

context – is finally changed to unsigned<12> (with the inputs still having type unsigned<16>). The
actor add cannot be used “as is” any longer because its signatures enforces that its inputs and output
have the same size. Of course, we could rewrite it as follows to meet the new requirements :

actor add
in (i 1 : unsigned<16>, i 2 : unsigned<16>)

out (o : unsigned<12>)
rules
| (i 1 : x , i 2 : y) −> o : (x+y : unsigned<12>) ;

But this obviously breaks the genericity of the actor and the more general principle of modularity.
If we don’t want – or can’t, because it’s part of a pre-existing, otherwise used library, for example –
to modify the add actor, the only solution is to insert, between the output of the add actor and the
network output outp, an actor – let’s call it resize – whose function is precisely to adjust the size of
its argument. In our particular case, the signature of this actor would be :

resize : unsigned<n> -> unsigned<12>

and our program could be rewritten as in listing 2.17.

Listing 2.17: The program of listing 2.16 rewritten� �
actor add . . . −− unchanged
actor r e s i z e

in (i : unsigned<n)
out (o : unsigned<12>)

rules
| i : x −> o : (x : unsigned <12) ;

stream inp1 : int<16> from ” inp . txt ” ;
stream inp2 : int<16> from ” inp . txt ” ;
stream outp : int<16> to ” r e s . txt ” ;

net outp = r e s i z e (add (inp1 , inp2)) ;� �
But, of course, the need then quickly arises for a generic version of the resize actor, so that we

don’t have to write a new one for each value of the output size. The idea is to make this size a parameter
of the actor, so that, in our case, the last line of the last program could be written :

net outp = r e s i z e 12 (add (inp1 , inp2)) ;

For this, the resize actor has to be defined as follows :

Listing 2.18: none� �
actor r e s i z e (k : i n t)

in (i : unsigned<n)

38

out (o : unsigned<k>)
rules
| i : x −> o : (x : unsigned<k) ;� �

The type of the resize actor is now

resize : k:int -> unsigned<n> -> unsigned<k>

Such a type is called a dependent type because the type of some its components (the result here)
depends on the value that will be assigned to some of the others (the first argument here). This
dependency is here explicited by naming the first argument (parameter)37.

In the previous example, the value of a parameter was used to define the size of some input/output
types. This value can also be used to refine the type of some local variables of the actor. This is
specially useful for arrays when the size of the array ultimately depends on the input data. In this case,
specifying this size as a parameter value to the corresponding actor instance may be more efficient than
fixing it in the actor definition itself. As an example, consider the dkl actor described in listing 2.1938.
This actor inserts k predefined values at the beginning of a list, discarding the same number of values
of values at the end39. For this it uses a local array (z) for memorizing the “delayed” values. The size
of this array obviously depends on the value of k parameter. Dependent typing nicely supports this
kind of dependency40.

Listing 2.19: The dkl actor� �
actor dkl (k : int , v : $t)

in (a : $t dc)
out (c : $t dc)

var s : {S0 , S1 , S2} = S0
var z : $t array [k] = [v | i = 0 to k−1]
var i : i n t
rules
| (s : S0 , a : ’<) −> (s : S1 , c : ’< , i : 0)
| (s : S1 , a : ’ p) when i<k−1 −> (s : S1 , c : ’ v , i : i +1, z [i] : p)
| (s : S1 , a : ’ p) −> (s : S2 , c : ’ v , i : 0 , z [i] : p)
| (s : S2 , a : ’ p) −> (s : S2 , c : ’ z [i] , i : i f i<k−1 then i+1 e l s e 0 ,

z [i] : p)
| (s : S2 , a : ’>) −> (s : S0 , c : ’>)
;� �
2.4.6 Higher order actors

Higher order actors are an important feature41 of the the CAPH language. Just like higher order func-
tions are functions taking other functions as argument in classical functional programming languages,
higher order (HO) actors are actors for which at least one parameter is a function.

37Internally, the compiler uses on a nameless mechanism, similar to DeBruijn indices for representing dependent types.
The type or resize, in particular, will be denoted ∀n. int → signed〈n〉 → signed〈@1〉, where @1 designates the first
argument.

38This actor is included in the standard prelude.
39If lists represents fixed size of samples or lines of an images, this operation is a “delay”, hence the name of the actor.
40Without it, the only solution is to set the size of the array to a “maximal” value which is both dangerous (what if

the actor is instanciated actor violates this assumption) and inefficient (leading to a waste of resources if the size of the
array is over-estimated) in a partcular case.

41Introduced in version 2.8.

39

The possibility to define and use HO actors significantly increases the abstraction level of programs.
Consider for example, the program given in listing 2.20, which defines and then uses two actors, inc
and double. The inc actor takes a stream of signed integers and produces a stream in which all data
tokens have been incremented by one, whereas the double actor multiplies each data token by two42.
Both actors exhibit a very similar structure, only differing in the function applied to data tokens (in the
third rule). It is natural, then, to view these actors as two instances of a more general actor – let’s call
it stream_apply – taking a function f as parameter and applying this function to each data token of
its input stream to produce the result stream. This actor stream_apply is defined in listing 2.21. The
type of its parameter f is signed<m> -> signed<m>, i.e. the type of a function taking a value of type
signed<m> and returning a value of the same type. This type is a hallmark of higher order actors. Note
that it is closely related to those of the actor input and output : since the f function is applied to data
tokens read on an input having type signed<m> dc, its domain type must be signed<m>. Respectively,
since the result of this function is encapsulated in a token having type signed<m> dc, its co-domain
type must be signed<m>. The program of listing 2.20 can be rewritten using the stream_apply actor
as illustrated in listing 2.22.

Listing 2.20: A small program showing two similar actors� �
actor i n c

in (i : s igned<m> dc)
out (o : s igned<m> dc)

rules i −> o
| ’< −> ’<
| ’> −> ’>
| ’ x −> ’ x+1
;

actor double
in (i : s igned<m> dc)
out (o : s igned<m> dc)

rules i −> o
| ’< −> ’<
| ’> −> ’>
| ’ x −> ’ x∗2
;

stream i : s igned<8> dc from . . .
stream o1 : s igned<8> dc to . . .
stream o2 : unsigned<16> dc . . .

net o1 = inc i ;
net o2 = double i ;� �

Listing 2.21: The stream apply actor� �
actor stream apply (f : s igned<m> −> s igned<m>)

in (i : s igned<m> dc)
out (o : s igned<m> dc)

rules i −> o

42So that, if the input stream i is, for example, < 1 2 3 >, then the output streams o1 and o2 will be < 2 3 4> and <

2 4 6 > respectively.

40

| ’< −> ’<
| ’> −> ’>
| ’ x −> ’ f (x)
;� �

Listing 2.22: The program of listing 2.20 rewritten using the actor defined in listing 2.21� �
function f inc x = x+1 : s igned<8> −> s igned<8>;
function f double x = x∗2 : s igned<8> −> s igned<8>;

actor stream apply (f : s igned<m> −> s igned<m>)
in (i : s igned<m> dc)
out (o : s igned<m> dc)

rules i −> o
| ’< −> ’<
| ’> −> ’>
| ’ x −> ’ f (x)
;

stream i : s igned<8> dc from . . .
stream o1 : s igned<8> dc to . . .
stream o2 : s igned<8> dc to . . .

net o1 = stream apply f inc i ;
net o2 = stream apply f double i ;� �

The dc.cph standard library (defined in lib/caph) defines several common higher order actors to
operate on structured streams.

The smap actor, for instance, is a generalisation of the stream_apply actor introduced above, in
which the applied function has the generic type t1 → t2 :� �
actor smap (f : $t1−>$t2)

in (i : $t1 dc)
out (o : $t2 dc)

rules
| i : SoS −> o : SoS
| i : Data x −> o : Data (f (x))
| i : EoS −> o : EoS ;� �
For example, if f_inc is a function incrementing its argument by one (just like in the first example)43,
we have :

smapf inc (〈 1 2 3 〉) = 〈 f inc(1) f inc(2) f inc(3) 〉 = 〈 2 3 4 〉

The smap2 actor is a variant of smap operating on two parallel streams :� �
actor smap2 (f : $t11 ∗$t12−>$t2)

in (i 1 : $t11 dc , i 2 : $t12 dc)
out (o : $t2 dc)

43and denoting ”actp (〈 x1 . . . xn 〉)” the application of actor act, with effective parameter p, to a streams s =
〈 x1 . . . xn 〉.

41

rules
| (i 1 : SoS , i 2 : SoS) −> o : SoS
| (i 1 : Data x , i 2 : Data y) −> o : Data (f (x , y))
| (i 1 : EoS , i 2 : EoS) −> o : EoS ;� �

For example, if add is a function adding its two arguments, we have :

smap2add (〈 x1 . . . xn〉, 〈 y1 . . . yn〉) = 〈 x1 + y1 . . . xn + yn 〉

The sfold higher order actor “reduces” structured streams by applying a reducing function over
each list of this stream. Formally :

sfoldf,z (〈 x1 x2 . . . xn〉) = f(f(f(f(z, x1), x2)..., xn)

For example :
sfold+,0 (〈 1 2 3 〉) = 0 + 1 + 2 + 3 = 6

The ssfold actor is a generalisation of the sfold operating on lists of lists. Formally, if we note
li = 〈 xi,1 xi,2 . . . xi,mi

〉 :

ssfoldf,z (〈 l1 . . . ln〉) = 〈 sfoldf,z(l1) . . . sfoldf,z(ln) 〉

For example :

ssfold+,0 (〈 〈 1 2 3 〉 〈 4 5 6 〉 〉) = 〈0 + 1 + 2 + 3 0 + 4 + 5 + 6〉 = 〈 6 15〉

The dc.cph library defines several variant and extensions of the HO actors : smapi, when the
applied function also depends on the position of the data in the stream, sfold2, for reducing two
parallel stream, etc.

2.4.7 Network declarations

The network language is used to define the network of actors which describes the application. This
involves defining how actors are instanciated and the interconnection between these instances. The
basic concepts have been introduced in Sec. 1.3.1. Two kinds of values are declared for this : wires and
wiring functions.

Wires

Wire declarations bind an identifier (resp. set of identifiers) to a wire (resp. set of wires) obtained when
instanciating an actor or a network of actors.
Wire declarations have the form

net <network pattern> = <network expression>

where

• <network pattern> is either a single identifier or a comma-separated list of identifiers enclosed
in brackets (a so-called tuple pattern),

• <network expression> is an expression representing a (sub)network of actors.

The previous declarations bind the output(s) of this network to the identifier(s) appearing in the
pattern, offering a means to subsequently “wire” the corresponding output(s).

42

Network expressions

Network expressions can be classified into two main categories :

• expressions representing sub-network of actors,

• expressions denoting values to be used as actor parameters.

The first category is described by the syntax given in Fig. 2.2 (this is an excerpt from the full
concrete syntax description given in Chap. 3) :

〈net expr〉 ::= 〈simple net expr〉
| 〈simple net expr〉 〈simple net expr〉+
| "(" 〈net expr〉 "," ... "," 〈net expr〉 ")"
| "let" ["rec"] 〈net bindings〉 "in" 〈net expr〉
| "function" 〈net pattern〉 "->" 〈net expr〉

〈simple net expr〉 ::= 〈var〉
| "()"
| "(" 〈net expr〉 ")"

– application
– t-uple
– local definition
– function definition

– identifiers

Figure 2.2: Syntax of the network language (excerpt)

Within this category

• identifiers refer either to previously defined wires, stream inputs or actors.

• applications “apply” a network expression to set of network expressions; two kind of values can
be applied :

– actors, like in the previous example,

– wiring functions, which are described in the next section.

In the former case, two kinds of arguments must be supplied, depending on whether the applied
actor has been declared with parameters or not.

– When the applied actor has no parameter, then the argument must be a single identifier, or
a tuple of identifiers. For example, if an actor add has been defined as� �
actor add

in (a : s igned<8>, b : s igned<8>)
out (c : s igned<8>)

. . .� �
then its application will be denoted as� �
net x = . . .
net y = . . .
net r = add (x , y) ;� �

– When the applied actor accepts parameters, then the value(s) of the parameter(s) must be
passed as an extra argument before the wire arguments.

Example 1. Consider an actor scale, accepting one parameter k and one input a defined as :

43

� �
actor s c a l e (k : s igned<8>)

in (a : s igned<8>)
out (c : s igned<8>)

rules
| a : x −> c : k∗x� �
then its application will be denoted, taking k=2 here for example, as� �
net x = . . .
net r = s c a l e 2 x ;� �
Example 2. Consider now an actor scale2, accepting two parameters, k1 k2, and two inputs,
a and b, defined as :� �
actor s c a l e 2 (k1 : s igned<8>, k2 : s igned<8>)

in (a1 : s igned<8>, a2 : s igned<8>)
out (c : s igned<8>)

rules
| (a1 : x , a2 : y) −> c : k1∗x+k2∗y� �
then its application will be denoted, taking k1=2 and k2=3 here, as� �
net x = . . .
net y = . . .
net r = s c a l e 2 (2 , 3) (x , y) ;� �

• Tuple patterns and expressions are used to simultaneously bind several identifiers, like in� �
net (x2 , x3) = (s c a l e 2 x , s c a l e 3 x)� �
where the scale actor defined above is instanciated twice.

• local definitions, introduced with the let ...in ..., construct, bind an identifier (or a set of
identifiers) to an expression with a limited scope. The name(s) introduced by the binding is (are)
only visible within the target expression. The special case of recursive local definitions is discussed
in Sec 2.4.7.

The second category of network expressions is used to represent values to be passed as parameters
to actors (such as 2 and (2,3)) in the examples given above, respectively). These values are limited
to :

• identifiers refering to globally defined values,

• scalar or array constants,

• tuples of the above.

44

Wiring functions

As introduced in Sec. 1.3.1, wiring functions simplifies the description of complex networks by allowing
the definition of reusable, polymorphic network patterns. Wiring function declarations have the form44 :

net fid <network pattern> = <network expression>

where fid is the name of the function and network pattern gives the name(s) of the formal argu-
ment(s)45.

Application of such a function follows the classical strict, call-by-value evaluation strategy : each
supplied argument is evaluated46 and the resulting value is bound to the corresponding formal argu-
ment; the right-hand side expression is then evaluated in an environment augmented with the resulting
bindings.

Listing 2.23:� �
net i n c 2 f x = inc (inc x) ;
net o = i n c 2 f i ;� �

In the example given listing 2.23, the inc2f function represents a network in which the output wire
(y) is obtained by having the input wire (x) traversing two inc boxes. It could be represented by the
“sub-network”of Fig. 2.347. The application of this function at line 2 instanciates this sub-network and
creates the network of Fig. 2.4, in which the sub-network input (resp. output) has been bound to actual
the input (resp. output) i (resp. o).

inc inc
x

inc2f

Figure 2.3: A representation of the inc2f wiring function defined in listing 2.23

oi inc incx

Figure 2.4: The network resulting from applying the inc2f function

Wiring functions can take several arguments. In this case, arguments can be passed either as a tuple
or as a sequence.

44Actually, and as evidenced by the abstract syntax of the language given in Chap. 4, there’s no distinction wire
declarations and wiring function declarations. The latter is just a syntactic shorthand. In fact, there’s an extra case to
the rule defining the syntax of expressions :

〈net expr〉 ::= ...
| "function" 〈simple net pattern〉 "->" 〈net expr〉

and the declaration net f <pat> = <exp> is handled as net f = function <pat> -> <exp>.
45Recursive network definitions are discussed separately in Sec 2.4.7.
46Since all network expressions are pure – i.e. cannot involve side-effects –, the order of evaluation is irrelevant here.
47The term sub-network is used here because there’s no real input nor output, only “slots” – drawn as small square

boxes in Fig. 2.3 – intended to be connected to actual wires

45

Example� �
net f oo (x , y) = add (x , inc y) ;
net o = foo (i1 , i 2) ;� �

The previous example could also have been written (strictly equivalent form) :� �
net f oo x y = add (x , inc y) ;
net o = foo i 1 i 2 ;� �

When this second definition form for the foo function48 is used as above, it is strictly equivalent to
the first one (in other words, the network corresponding to the two previous programs are identical). But
the second form has a bonus : it allows partial application of the foo function. Partial application means
fixing the value of some arguments to obtain another function, which can be viewed as “specialized”
version of the original one. In our case, partial application means fixing some part of the sub-network
defined by the original function. For example, if we write� �
net foo1 = foo i ;� �

then foo1 is the function obtained by assigning the value i to x in the definition of foo (Fig. 2.5).
In other words, the foo1 function is equivalent to the function that could have been written as� �
net foo2 y = add (i , i nc y) ;� �

add

inc

add

inc
i

net foo = add (x, inc y); net foo1 = foo i;

Figure 2.5: Partial application

Then, the three programs of Fig. 2.6 are stricly equivalent :

� �
net f oo x y =

add (x , inc y) ;
net o = foo i 1 i 2 ;� �

� �
net f oo x y =

add (x , inc y) ;
net foo1 = foo i 1 ;
net o = foo1 i 2 ;� �

� �
net foo2 y =

add (i1 , inc y) ;
net o = foo2 i 2 ;� �

Figure 2.6: Three equivalent programs

Higher-order wiring functions. For now we have been passing only wires as arguments to wiring
functions. But functions can also be passed as arguments to wiring functions

48Technically known as the curried form.

46

Example� �
net twice (f , x) = f (f x) ;� �

The twice (higher-order) function takes two arguments, a function f and a wire x. It instanciates
the sub-network corresponding to f a first time, binding its input to the x wire, and then a second time,
binding the former output to the input of the latter. For example, writing :� �
net o = twice (inc2 f , i) ;� �

produces the network depicted in Fig. 2.7.

oi inc inc inc inc

Figure 2.7: net o = twice (inc2f, i)

This is the combination of partial application and higher-order functions that allows the encapsu-
lation of graph patterns as wiring functions, as illustrated in Sec. 1.3.1 with the function diamond. In
the last example of this Section :� �
net o = diamond (dup , inc , diamond (dup , inc , dec , mul) , mul) i ;� �

the inner application of function diamond is partial, so that it can be passed, as a wiring function,
as an argument to the outer application.

Recursive wiring

By recursive wiring, we mean the ability for a box (resp. set of boxes) to take as input some wires
originating, directly or indirectly, from its (resp. their) output(s).

This is illustrated in Fig. 2.8, where the network on the left is described by the program on the right.
Here, the second output of actor A is re-injected, after passing through actor B to its second input.

Mutually recursive wiring between actors is also possible, as shown on Fig. 2.9.

As shown above, recursive wiring is used to describe cyclic networks. In the classical dataflow model,
cycles are typically used to implement iterations [3]. In CAPH, iterations are generally handled at the
actor level, using local variables.

Functionnaly, the two formulations are equivalent : in the recursive version, the “state” memorized
in the local variables is simply “externalized” and held in the looping wires.

To illustrate this, let’s go back to the actor suml introduced at the end of section 2.4.4 :

Listing 2.24:� �
actor suml

in (i : s igned<16> dc)
out (o : s igned<16>)

var s t a t e : { S0 , S1 } = S0
var sum : i n t
rules
| (s t a t e : S0 , i : ’<) −> (sum : 0 , s t a t e : S1)
| (s t a t e : S1 , i : ’>) −> (o : sum , s t a t e : S0)
| (s t a t e : S1 , i : ’ v) −> (sum : sum+v) ;� �

47

actor A
 in (a:t1, b:t2)
 out (c:t3, d:t4)
...

actor B
 in (a: t4)
 out (c: t2)
...

net rec (o,z) = A (i, B z);

i

A B

o
z

Figure 2.8: Example of recursive wiring

The suml actor computes the sum of each list given as input, using two local variables : one holding
the state of the computation and the other the accumulator. This actor can be used, for example, in
the following program :

Listing 2.25:� �
actor suml . . . −− as above

stream i : s igned<16> dc from ” sample . txt ” ;
stream o : s igned<16> to ” r e s u l t . txt ” ;

net o = suml i ;� �
If the input file sample.txt contains, let say

< 1 2 3 > < 4 5 6 >

then output file result.txt will contain

6 15

Listing 2.26 shows an equivalent program based on a variant of the suml actor in which local variables
have been replaced by feedback wires :

Listing 2.26: A recursive reformulation of actor suml� �
actor suml rec

in (i : s igned<16> dc , sum : s igned<16>)
out (o : s igned <16>, nsum : s igned<16>)

rules
| (i : ’<) −> nsum : 0
| (i : ’> , sum : s) −> o : s
| (i : ’ v , sum : s) −> nsum : s+v
;

48

actor A
 in (a:t1, b:t2)
 out (c:t3, d:t4)
...

actor B
 in (a:t4, b:t5)
 out (c:t2, d:t6)
...

net rec (o1,z1) = A (i1,z2)
and (z2,o2) = B (z1,i2);

i1

A

o1

B

i2

o2
z1 z2

Figure 2.9: Example of mutually recursive wiring

stream i : s igned<16> dc from ” sample . txt ” ;
stream o : s igned<16> to ” r e s u l t . txt ” ;

net r e c (o , z) = suml rec (i , z) ;� �
Note that suml rec is a state-less actor : it has no local variable. The running sum is now

implicitely kept on a external feedback wire, connecting its nsum output to its sum input. The three
rules describing its behavior can be read as :

• when reading a “<” control token on input i, write the initial value of the accumulator on the
feedback wire,

• when reading a “>” control token on input i, write the final value of the accumulator, available
on input sum, on output o,

• when reading a value on both inputs, add these values and write the sum on the feedback wire.

The corresponding dataflow graph is given in Fig. 2.10.
Note that, if functionally equivalent, this second program actually generates less efficient code, since

the recursive values must in this case pass through external links, which introduce latencies. For this
reason, formulations using local variables should always be prefered, when possible, when writing CAPH
programs49.

Wiring of IO-less actors

The special network expression “()” (called unit) is used to instantiate input or output-less actors.
An example is given in Listing 2.27 and Fig. 2.11, which use the actors src, snk and double previously
defined in Listings 2.14, 2.15 and 2.1. Such networks, with no input nor output stream or port are
said to be “closed”. Their main usage is to model applications for which input and output streams are

49There’s a noticeable exception to this rule; it concerns the d1lr actor defined in library img ops.cph and imple-
menting line delay on images. In this case, recursive wiring is deliberately used in order to have the delayed line stored
in a external FIFO, because this scheme is more efficiently handled by the VHDL synthetisers.

49

o

i

suml

 :signed<8> dc

 :signed<16>

 :signed<16>

Figure 2.10: A cyclic dataflow network

not read from (resp. to) external devices50 but are produced and consumed by actors performing their
operations by side-effect. A typical example will be an actor reading output data from a memory or
displaying results in a graphical window51.

Listing 2.27: Example of network with IO-less actors� �
actor s r c in (i : un i t) out (o : i n t) . . . ;
actor snk in (i : i n t) out (o : un i t) . . . ;
actor double in (i : i n t) out (o : i n t) . . . ;

net () = snk (double (s r c ())) ;� �

snk

double
 :int

src
 :int

Figure 2.11: The network corresponding to the program of Listing 2.27

50Viewed as streams or ports at the network level.
51In practice, such actors will be provided using the implemented pragma.

50

Higher-order wiring primitives

Just like certain kinds of actor behavior can be encapsulated using higher order actors (see Sec. 2.4.6),
certain patterns in data-flow graphs can be encoded concisely in CAPH using so-called higher-order
wiring primitives. The four basic higher-order primitives are map, napp, foldl and pipe.

The map higher-order primitive52 is illustrated in Fig. 2.12. It is used whenever the same processing
has to be carried out on a set of separate data streams.

...f

x1

y1

f

x2

y2

f

xn

yn

...

...
Figure 2.12: A parallel graph pattern

A simple description of the graph given in Fig. 2.12 can be given by simply replicating net defini-
tions :� �
net y1 = f x1 ;
net y2 = f x2 ;
. . .
net yn = f xn ;� �

The map higher-order primitive offers a more concise way of describing this graph :� �
net (y1 , y2 , . . . , yn) = map f (x1 , x2 , . . . , xn) ;� �

The map function takes two arguments :

• a wiring function f , with type τ → τ ′,

• a tuple (x1, . . . , xn) of wires53, each having type τ

and returns a tuple of wires, each of type τ ′, by applying the f function to each wire xi. In other
words :

map f (x1, . . . , xn) = (f x1, . . . , f xn)

52Not to be confused with the smap higher order actor.
53Actually, and for technical reasons, the type of the second argument map is not (τ, . . . , τ) but (τ, α) bundle, where

bundle is a built-in type constructor for representing bundles of homogeneous types. The type-checking phases unifies the
types (τ, . . . , τ)︸ ︷︷ ︸

n

and (τ, n) bundle. Since this unification is carried out automatically by the type checker, the map function

can be viewed as operating and returning directly tuples of values (of the same type, of course).

51

The first argument of map can be an simple actor, with or without parameter(s) or a complex wiring
function, as illustrated in Fig. 2.13, 2.14 and 2.15.

� �
actor double

in (a : unsigned<8>)
out (c : unsigned<8>)

rules a −> c
| x −> 2∗x
;

net i 1 = . . .
net i 2 = . . .

net (o1 , o2) = map double (i1 , i 2) ;� � o2 o1

i2

double

i1

double

Figure 2.13: map - example 1

� �
actor s c a l e (k : unsigned<8>)

in (a : unsigned<8>)
out (c : unsigned<8>)

rules a −> c
| x −> 2∗x
;

net i 1 = . . .
net i 2 = . . .

net (o1 , o2) = map (s c a l e 2) (i1 , i 2) ;� � o2 o1

i2

scale(2)

i1

scale(2)

Figure 2.14: map - example 2

A very useful variant of the map function is mapi. As map, the mapi function takes two arguments,
a wiring function f , with type unsigned → τ → τ ′ and a tuple of wires, and returns a tuple of wires,
obtained by applying the f function to each wire of the input tuple. But the f function here takes an

52

� �
actor s c a l e (k : unsigned<8>)

in (a : unsigned<8>)
out (c : unsigned<8>)

rules a −> c
| x −> 2∗x
;

net i 1 = . . .
net i 2 = . . .

net f x = s c a l e 2 (s c a l e 4 x) ;

net (o1 , o2) = map f (i1 , i 2) ;� � o2 o1

i2

scale(4)

i1

scale(4)

scale(2)scale(2)

Figure 2.15: map - example 3

extra argument which is automatically set to the index54 of the corresponding wire in the input tuple.
In other words, and more precisely :

mapi f (x1, . . . , xn) = (f 0 x1, . . . , f (n− 1) xn)

A typical usage of the mapi function is given in Fig 2.16. Here the extra argument (ranging from 0
to 3) is used to adjust the scaling factor applied in each branch of the parallel pattern.

As for the map function, the first argument of the mapi function can be an actor or a any wiring
function having a type of the form unsigned→ τ ′ → τ ′ :

Another variant of the map function is map2. The map2 function takes three arguments :

• a wiring function f , with type τ1 × τ2 → τ ′,

• a first tuple of wires, each with type τ1,

• a second tuple of wires, each with type τ2,

and returns a tuple of wires, obtained by applying the f function to each pair of input wires. In other
words :

map2 f ((x1, . . . , xn), (y1, . . . , yn)) = (f (x1, y1), . . . , f (xn, yn))

Of course, the two input tuples must have the same size. Fig. 2.17 gives an example involving the
map2 function.

As for the map function, map2 has a variant, named map2i for which the function argument takes an
extra argument :

54Starting at 0, not 1.

53

� �
const c o e f f = [2 , 4 , 8 , 1 6] : unsigned<8> array [4] ;

actor s c a l e (k : unsigned<8>)
in (a : unsigned<8>)
out (c : unsigned<8>)

rules a −> c
| x −> k∗x
;

net i 1 = . . .
net i 2 = . . .
net i 3 = . . .
net i 4 = . . .

net f i x = s c a l e (c o e f f [i]) x ;

net (o1 , o2 , o3 , o4) = mapi f (i1 , i2 , i3 , i 4) ;� �

o4 o3 o2 o1

i4

scale(16)

i3

scale(8)

i2

scale(4)

i1

scale(2)

Figure 2.16: mapi - example� �
actor add (k : unsigned<8>)

in (a : unsigned<8>, b : unsigned<8>)
out (c : unsigned<8>)

rules (a , b) −> c
| (x , y) −> k∗x+y
;

net i 11 = . . .
net i 12 = . . .
net i 21 = . . .
net i 22 = . . .

net (o1 , o2) =
map2 (add 2) ((i11 , i 12) , (i21 , i 22)) ;� �

o2 o1

i22

add(2)

i21

add(2)

i12 i11

Figure 2.17: map2 - example

map2i f ((x1, . . . , xn), (y1, . . . , yn)) = (f 0 (x1, y1), . . . , f (n− 1) (xn, yn))

With the map family of higher-order primitives, the same processing is replicated over a set of distinct
data streams (the number of streams giving the “width” of the data-flow graph). The napp higher-order
primitive offers a way of replicating a processing on the same data stream, the number of replications
(the “width” of the graph) being here specified as an extra argument. Typical examples are given in
Fig. 2.18 and 2.19.

The napp function takes three arguments :

• a integer n (which must be a statically bound constant),

• a wiring function f , with type τ → τ ′,

54

• a wire x, of type τ

and returns a tuple of n wires, each of type τ ′, by applying n times the f function to wire x. In other
words :

napp n f x = (f x, . . . , f x︸ ︷︷ ︸
n

)

As for map, nappi is a variant of napp for which the applied fonction (f) takes a extra parameter
automatically bound to the replication index :

nappi n f x = (f 0 x, . . . , f (n− 1) x)

The nappi higher-order primitive is illustrated in Fig. 2.20 (with n = 3).� �
actor double

in (i : unsigned<8>)
out (o : unsigned<8>)

rules
| i : x −> o :2∗ x
;

stream i : unsigned<8> . . .
stream o1 : unsigned<8> . . .
stream o2 : unsigned<8> . . .
stream o3 : unsigned<8> . . .

net (o1 , o2 , o3) = napp 3 double i ;� �
o3o2o1

i

double

 :unsigned<8>

double

 :unsigned<8>

double

 :unsigned<8>

 :unsigned<8> :unsigned<8> :unsigned<8>

Figure 2.18: napp - example 1

� �
actor addm

in (i 1 : unsigned<8>, i 2 : unsigned<8>)
out (o : unsigned<8>)

rules
| (i 1 : x1 , i 2 : x2) −> o : x1+x2
;

stream i 1 : unsigned<8> . . .
stream i 2 : unsigned<8> . . .
stream o1 : unsigned<8> . . .
stream o2 : unsigned<8> . . .

net (o1 , o2) = napp 2 addm (i1 , i 2) ;� �
o2 o1

i2

addm

 :unsigned<8>

addm

 :unsigned<8>

i1

 :unsigned<8> :unsigned<8>

 :unsigned<8> :unsigned<8>

Figure 2.19: napp - example 2

55

� �
actor s c a l e (k : unsigned<8>)

in (i : unsigned<8>)
out (o : unsigned<8>)

rules
| i : x −> o : (k+1)∗x
;

stream i : unsigned<8> . . .
stream o1 : unsigned<8> . . .
stream o2 : unsigned<8> . . .
stream o3 : unsigned<8> . . .

net (o1 , o2 , o3) = nappi 3 s c a l e i ;� �
o3o2o1

i

scale(0)

 :unsigned<8>

scale(1)

 :unsigned<8>

scale(2)

 :unsigned<8>

 :unsigned<8> :unsigned<8> :unsigned<8>

Figure 2.20: nappi - example

The map function (and its variants mapi, map2 and map2i) encodes parallel replication graph patterns.
Another higher-order wiring primitive, foldl (fold left)55 is provided for encoding parallel reduction
patterns. Formally, if

• x1 is a value having type τ ,

• x = (x2, . . . , xn) a tuple of values having type τ and

• f a function having type τ × τ → τ

then
foldl f x1 (x2, . . . , xn) = f(. . . f(f(x1, x2), x3) . . . , xn)

In other words, the result of applying foldl to f and x is obtained by applying f as a binary reduction
operator over the tuple (x1, . . . , xn). An example showing the effect of the foldl function is given in
Fig. 2.21.

As for map, the foldl function has a variant, named foldli for dealing with indexed reduction.
Formally, if x is a value with type τ , (x2, . . . , xn) is a tuple of values with type τ and f a function
having type unsigned→ τ × τ → τ , then

foldli f x1 ((x2, . . . , xn) = f (n− 1) (. . . f 1 (f 0 (x1, x2), x3) . . . , xn)

A last variant of the foldl function is foldt, which performs a dyadic reduction, as shown in
Fig. 2.22.

The pipe higher-order wiring primitive can be used to encode linear “pipelined” graph patterns, as
illustrated in Fig. 2.23.

The chain higher-order wiring primitive is similar to pipe but produces a tuple of values corre-
sponding to each stage of the pipe, as illustrated in Fig. 2.24.

55Not to be confused with the sfold and ssfold higher order actors.

56

� �
actor madd (k : unsigned<8>)

in (a : unsigned<8>, b : unsigned<8>)
out (c : unsigned<8>)

rules (a , b) −> c
| (x , y) −> x∗k+y
;

net i 1 = . . .
net i 2 = . . .
net i 3 = . . .
net i 4 = . . .

net f (x , y) = madd 2 (x , y) ;

net o = f o l d l f i 1 (i2 , i3 , i 4) ;� � o

i4

madd(2)

i3

madd(2)

i2

madd(2)

i1

Figure 2.21: foldl - example

� �
actor add

in (a : unsigned<8>, b : unsigned<8>)
out (c : unsigned<8>)

rules (a , b) −> c
| (x , y) −> x+y ;

net i 1 = . . .
net i 2 = . . .
net i 3 = . . .
net i 4 = . . .

net o = f o l d t add (i1 , i2 , i3 , i 4) ;� �
o

i4

add

 :unsigned<8>

i3

 :unsigned<8>

i2

add

 :unsigned<8>

i1

 :unsigned<8>

add

 :unsigned<8> :unsigned<8>

 :unsigned<8>

Figure 2.22: foldt - example

57

� �
actor double

in (a : unsigned<8>)
out (c : unsigned<8>)

rules a −> c
| x −> 2∗x ;

net i = . . .

net o = pipe 4 double i ;� �
o

i

double

 :unsigned<8>

double

 :unsigned<8>

double

 :unsigned<8>

double

 :unsigned<8>

 :unsigned<8>

Figure 2.23: pipe - example

� �
actor double . . . ;

actor i n c r
in (a : unsigned<8>)
out (c : unsigned<8>)

rules a −> c
| x −> x+1
;

stream i : unsigned<8> from . . . ;
stream o1 : unsigned<8> to . . . ” ;
stream o2 : unsigned<8> to . . . ” ;
stream o3 : unsigned<8> to . . . ” ;
stream o4 : unsigned<8> to . . . ” ;

net (o1 , o2 , o3 , o4) = chain 4 double i ;� � o4

o3

o2

o1

i

double

 :unsigned<8>

 :unsigned<8>

double

 :unsigned<8>

 :unsigned<8>

double

 :unsigned<8>

 :unsigned<8>

double

 :unsigned<8>

 :unsigned<8>

Figure 2.24: pipe - example

58

The higher-order primitives (HOP) introduced above can of course be combined to define powerful
network building functions. As an illustration, the program of Listing 2.28 describes a generic 1×n FIR
filter using the chain and foldl HOPs56. The former is used to build the values corresponding to the
input stream delayed by 1, 2, . . . n samples. The latter to describe the multiply-accumulate computation
tree. The corresponding dataflow graph is given in Fig. 2.25.

Listing 2.28: A 1× n FIR filter described in CAPH using the chain and foldl higher-order primitives� �
#inc lude ”stream ops . cph” −− f o r [d] , one−sample d e l a y ac t or

const c o e f f = [1 , 2 , 3 , 2 , 1] : s igned<12> array [5] ;

actor madd (j : unsigned<4>)
in (acc : int<s ,m>, tap : int<s ,m>)

out (o : int<s ,m>)
rules
| (acc : s , tap : x) −> o : x∗ c o e f f [j]+ s
;

net f i r x =
l et xs = chain 5 (d 0) x in
f o l d l i madd x xs ;

stream i : s igned<12> from ” sample . txt ” ;
stream o : s igned<12> to ” r e s u l t . txt ” ;

net o = f i r i ;� �

o

i

madd(0)

 :signed<12>

d(0)

 :signed<12>

madd(1)

 :signed<12> madd(2)

 :signed<12> madd(3)

 :signed<12>

madd(4)

 :signed<12>

 :signed<12>

 :signed<12>

d(0)

 :signed<12>

 :signed<12>

d(0)

 :signed<12>

 :signed<12>

d(0)

 :signed<12>

 :signed<12>

d(0)

 :signed<12>
 :signed<12>

Figure 2.25: The dataflow graph obtained from the program in Listing 2.28

2.5 A complete example

Listing 2.29 gives the full CAPH source code of a basic application for extracting edges in images.
Figure 2.27 gives the corresponding dataflow network.

For each pixel Pi,j , the local gradient magnitude is approximated by the sum of the absolute value of
the horizontal and vertical derivatives (|Pi,j−Pi,j−1|+|Pi,j−Pi−1,j |) and the resulting value is compared
to a fixed threshold for producing a binary image (with edge pixels encoded as 1 and background pixels
as 0).

An example of input and output image (obtained with the simulator) is given Fig. 2.26.
Five actors are involved in this application :

56This program can be found in the directory examples/fir/fir1n of the distribution.

59

Input image Result image

Figure 2.26:

• the d1p and d1l actors are defined in the library img_ops.cph57. They are used by the dx and
dy wiring functions (lines 31-32) to compute the horizontal and vertical derivatives. They delay
an image by one pixel and by one line respectively, inserting a null value in the first colum (resp.
line) and discarding the first column (resp. line). For example,

– d1p:< < 1 2 3 4 > < 5 6 7 8 > > = < < 0 1 2 3 > < 0 5 6 7 > >

– d1l:< < 1 2 3 4 > < 5 6 7 8 > > = < < 0 0 0 0 > < 0 1 2 3 > >

• the add actor (lines 4-10) performs the normalized addition of two structured streams, preserving
the structure; the n parameter is the normalization factor;

• the asub actor (lines 13-19) computes the absolute value of the difference of two structured
streams; for this it uses a global function f abs defined lines 1-2 of the program;

• the thr actor (lines 22-28) binarizes a structured stream according to a given threshold; the
threshold is specified as a parameter; the resulting stream contains only 0’s and 1’s.

Lines 31-32 defines the two wiring functions dx and dy computing the horizontal and vertical deriva-
tives of their argument. The [0] argument passed to the d1p and d1l actors is the value of the pixel
inserted in the first column (resp. line).

For simulation and SystemC execution, the input (resp. output) stream is here read (written)
directly in (resp. to) a PGM file (this is an image) (lines 34-35). The input file will be specified at
compile time using the macro mechanism described in Sec 10.

Lines 37-38 gives the network description. The value gm is the image of the gradient magnitude
(computed as the sum of the absolute values of the horizontal and vertical derivatives). The result
is obtained by passing this image to the thr actor. As for the input file, the threshold value will be
specified here at compile time58.

Listing 2.29: A basic edge extraction application in Caph� �
1 function f abs x =
2 i f x < 0 then −x e l s e x : s igned<m> −> s igned<m>;
3
4 actor add (n : unsigned<4>)
5 in (a : s igned<m> dc , b : s igned<m> dc)
6 out (c : s igned<m> dc)
7 rules (a , b) −> c
8 | (’< , ’<) −> ’<

57See chap. 11; d1l is actually a wiring function invoking the d1lr actor in a recursive manner, as shown in Fig. 2.27.
58A more adaptative approach would of course compute this threshold from some statistics extracted from the input

image.

60

9 | (’> , ’>) −> ’>
10 | (’ p1 , ’ p2) −> ’ (p1+p2)>>n ;
11
12 actor asub
13 in (a : s igned<m> dc , b : s igned<m> dc)
14 out (c : s igned<m> dc)
15 rules (a , b) −> c
16 | (’< , ’<) −> ’<
17 | (’> , ’>) −> ’>
18 | (’ p1 , ’ p2) −> ’ f abs (p1−p2) ;
19
20 actor thr (t : s igned<m>)
21 in (a : s igned<m> dc)
22 out (c : unsigned<1> dc)
23 rules a −> c
24 | ’< −> ’<
25 | ’> −> ’>
26 | ’ p −> i f p > t then ’1 e l s e ’0 ;
27
28 net dx i = asub (i , d1p 0 i) ;
29 net dy i = asub (i , d1 l 0 i) ;
30
31 stream inp : s igned<10> dc from ”%arg1 ” ;
32 stream r e s : unsigned<1> dc to ” r e s u l t . txt ” ;
33
34 net gm = add 0 (dx inp , dy inp) ;
35 net r e s = thr %arg2 gm;� �

Note (version 2.8). The program given in listing 2.29 can be rewritten in a more concise manner using
higher order actors (see Sec. 2.4.6). The definition of thr actor can be replaced by an instanciation of
the smap actor, with the following function :

function f_thr(x) = if x>%th then (1:unsigned<1>) else (0:unsigned<1>) : signed<m>->unsigned<1>;

Similarly, the definition of add and asub actors can be replaced by an instanciation of the smap2 actor,
with the following functions, respectively :

function f_add(x,y) = x+y : signed<m> * signed<m> -> signed<m>;

function f_sub(x,y) = f_abs(x-y) : signed<m> * signed<m> -> signed<m>;

The corresponding program and resulting dataflow graph are given in listing 2.30 and figure 2.28
respectively.

Listing 2.30: The program of listing 2.29 rewritten with higher order actors� �
1 function f abs x =
2 i f x < 0 then −x e l s e x : s igned<s> −> s igned<s>;
3 function f thr (x) =
4 i f x > %th then (1 : unsigned<1>) e l s e (0 : unsigned<1>)
5 : s igned<m> −> unsigned<1>;
6 function f add (x , y) = x+y : s igned<m> ∗ s igned<m> −> s igned<m>;
7 function f sub (x , y) = f abs (x−y) : s igned<m> ∗ s igned<m> −> s igned<m>;

61

res

inp

asub

 :signed<10> dc d1p(0)

 :signed<10> dc

asub

 :signed<10> dc d1lr(0)

 :signed<10> dc

thr(40)

 :unsigned<1> dc

add(0)

 :signed<10> dc

 :signed<10> dc

 :signed<10> dc

 :signed<10> dc

 :signed<10> dc

 :signed<10>

Figure 2.27: The data-flow graph for the edge extraction application

8
9 net dx i = smap2 f sub (i , d1p 0 i) ;

10 net dy i = smap2 f sub (i , d1 l 0 i) ;
11
12 stream inp : s igned<10> dc from %i f i l e ;
13 stream r e s : unsigned<1> dc to ” r e s u l t . txt ” ;
14
15 net r e s = smap f thr (smap2 f add (dx inp , dy inp)) ;� �

62

res

inp

smap2(f_sub)

 :signed<10> dc d1p(0)

 :signed<10> dc

smap2(f_sub)

 :signed<10> dc d1lr(0)

 :signed<10> dc

smap(f_thr)

 :unsigned<1> dc

smap2(f_add)

 :signed<10> dc

 :signed<10> dc

 :signed<10> dc

 :signed<10> dc

 :signed<10> dc

 :signed<10>

Figure 2.28: The data-flow graph derived from the program in listing 2.30 (to be compared with
figure 2.27

63

Chapter 3

Syntax

This appendix gives a BNF definition of the concrete syntax for CAPH programs. The meta-syntax
is conventional. Terminals are enclosed in double quotes " . . . ". Non-terminals are enclosed in angle
brackets < . . . >. Vertical bars | are used to indicate alternatives. Constructs enclosed in brackets [

. . .] are optional. Parentheses (. . .) are used to indicate grouping. Ellipses (...) indicate obvious
repetitions. An asterisk (*) indicates zero or more repetitions of the previous element, and a plus (+)
indicates one or more repetitions.

Programs

〈program〉 ::= 〈decl〉*

〈decl〉 ::= 〈type decl〉 ";"
| 〈val decl〉 ";"
| 〈io decl〉 ";"
| 〈actor decl〉 ";"
| 〈net decl〉 ";"
| 〈pragma decl〉

Type declarations

〈type decl〉 ::= 〈abbrev type decl〉
| 〈variant type decl〉

〈abbrev type decl〉 ::= "type" 〈id〉 "==" 〈type〉

〈variant type decl〉 ::= "type" [〈ty params〉] 〈id〉 [〈sz params〉] "=" 〈constr decls〉

〈ty params〉 ::= 〈ty var〉
| "(" 〈ty var〉 "," ... "," 〈ty var〉 ")"

〈sz params〉 ::= "<" 〈sz var〉 ">"
| "<" 〈sz var〉 "," ... "," 〈sz var〉 ">"

〈constr decls〉 ::= 〈constr decl〉 [| 〈constr decls〉]

64

〈constr decl〉 ::= 〈con id〉 [〈impl tag〉] ["of" 〈constr args〉]

〈constr args〉 ::= 〈type〉
| 〈type〉 "*" ... "*" 〈type〉

〈impl tag〉 ::= "%" 〈intconst〉

Global value declarations

〈value decl〉 ::= "const" 〈id〉 "=" 〈expr〉 [":" 〈type〉]
| "const" 〈id〉 "=" 〈array init〉 [":" 〈type〉]
| "function" 〈id〉 〈fun pattern〉 "=" 〈expr〉 [":" 〈type〉]
| "function" 〈id〉 "=" "extern" 〈vhdl fn name〉 "," 〈c fn name〉 "," 〈caml fn name〉 ":"
〈type〉

〈fun pattern〉 ::= 〈id〉
| "(" 〈id〉 "," ... "," 〈id〉 ")"

〈vhdl fn name〉 ::= 〈string〉

〈c fn name〉 ::= 〈string〉

〈caml fn name〉 ::= 〈string〉

Actor declarations

〈actor decl〉 ::= "actor" 〈id〉 〈actor intf 〉 〈actor body〉

Actor interface

〈actor intf 〉 ::= ["(" 〈actor params〉 ")"] "in" "(" 〈actor ins〉 ")" "out" "(" 〈actor outs〉 ")"

〈actor params〉 ::= 〈actor param〉 ["," 〈actor params〉]

〈actor param〉 ::= 〈id〉 ":" 〈type〉

〈actor ins〉 ::= 〈actor ios〉

〈actor outs〉 ::= 〈actor ios〉

〈actor ios〉 ::= 〈actor io〉 ["," 〈actor ios〉]

〈actor io〉 ::= 〈id〉 ":" 〈type〉

Actor body

〈actor body〉 ::= 〈actor var〉* "rules" 〈actor rules〉

〈actor rules〉 ::= 〈rule schema〉 〈unqual rule〉+
| 〈qual rule〉+

65

〈actor var〉 ::= "var" 〈id〉 ":" 〈var type〉 ["=" 〈var init〉]

〈var init〉 ::= 〈expr〉
| 〈array init〉

〈rule schema〉 ::= 〈qualifiers〉 "->" 〈qualifiers〉

〈qualifiers〉 ::= 〈qualifier〉
| "(" 〈qualifier〉 "," ... "," 〈qualifier〉 ")"

〈qualifier〉 ::= 〈id〉
| 〈id〉 "[" 〈simple array index 〉 "]"
| 〈id〉 "[" 〈simple array index 〉 "]" "[" 〈simple array index 〉 "]"

〈unqual rule〉 ::= "|" 〈unqual rule lhs〉 [〈rule guard〉] "->" 〈unqual rule rhs〉

〈unqual rule lhs〉 ::= 〈rule pattern〉
| "(" 〈rule pattern〉 "," ... "," 〈rule pattern〉 ")"

〈qual rule〉 ::= "|" 〈qual rule lhs〉 [〈rule guard〉] "->" 〈qual rule rhs〉

〈qual rule lhs〉 ::= 〈qual rule pattern〉
| "(" 〈qual rule pattern〉 "," ... "," 〈qual rule pattern〉 ")"

〈qual rule pattern〉 ::= 〈qualifier〉 ":" 〈rule pattern〉

〈rule pattern〉 ::= 〈simple rule pattern〉
| 〈con id〉 [〈simple rule pattern〉]
| 〈con id〉 "(" 〈simple rule pattern〉 "," ... "," 〈simple rule pattern〉 ")"
| "’<"1

| "’>"2

| "’" 〈simple rule pattern〉3
| " "

〈simple rule pattern〉 ::= 〈var〉
| 〈scalar constant〉
| " "

〈rule guard〉 ::= "when" 〈rule guard exprs〉

〈rule guard exprs〉 ::= 〈 rule guard expr〉 ["and" 〈rule guard exprs〉]

〈rule guard expr〉 ::= 〈simple rule expr〉

〈unqual rule rhs〉 ::= 〈rule expr〉
| "(" 〈rule expr〉 "," ... "," 〈rule expr〉 ")"

1Synonym for the builtin constructor SoS.
2Synonym for the builtin constructor EoS.
3Synonym for the builtin constructor Data.

66

〈qual rule rhs〉 ::= 〈qual rule expr〉
| "(" 〈qual rule expr〉 "," ... "," 〈qual rule expr〉 ")"

〈qual rule expr〉 ::= 〈qualifier〉 ":" 〈rule expr〉

〈rule expr〉 ::= 〈simple rule expr〉
| 〈con id〉 [〈simple rule expr〉]
| 〈con id〉 "(" 〈simple rule expr〉 "," ... "," 〈simple rule expr〉 ")"
| "’<"

| "’>"

| "’" 〈simple rule expr〉
| " "

〈simple rule expr〉 ::= 〈expr〉

IO declarations

〈io decl〉 ::= "stream" 〈id〉 ":" 〈type〉 ("from" | "to") 〈device〉
| "port" 〈id〉 ":" 〈type〉 ["from" 〈device〉] "init" 〈simple net expr〉
| "port" 〈id〉 ":" 〈type〉 "to" 〈device〉]

〈device〉 ::= 〈string〉

Network declarations

〈net decl〉 ::= "net" ["rec"] 〈net bindings〉

〈net bindings〉 ::= 〈net binding〉 ["and" 〈net bindings〉]

〈net binding〉 ::= 〈net pattern〉 "=" 〈net expr〉
| 〈id〉 〈net pattern〉+ "=" 〈net expr〉

〈net pattern〉 ::= 〈var〉
| "(" 〈net pattern〉 "," ... "," 〈net pattern〉 ")"
| "()"

〈net expr〉 ::= 〈simple net expr〉
| 〈simple net expr〉 〈simple net expr〉+
| 〈net exprs〉
| "let" ["rec"] 〈net bindings〉 "in" 〈net expr〉
| "function" 〈net pattern〉 "->" 〈net expr〉

〈simple net expr〉 ::= 〈var〉
| "()"
| "(" 〈net expr〉 ")"
| "(" 〈simple net expr〉 ":" 〈type〉 ")"
| 〈param value〉

67

〈param value〉 ::= 〈var〉
| 〈scalar constant〉
| 〈array1 constant〉
| 〈array2 constant〉
| "(" 〈var〉 "[" 〈simple array index 〉 "]" ")"
| "(" 〈var〉 "[" 〈simple array index 〉 "]" "[" 〈simple array index 〉 "]" ")"
| "(" 〈param value〉 ":" 〈type〉 ")"

〈net exprs〉 ::= 〈net expr〉 ["," 〈net exprs〉]

Pragma declarations

〈pragma decl〉 ::= "#pragma" 〈id〉 ["(" 〈id〉 "," ... "," 〈id〉 ")"]

Expressions

〈expr〉 ::= 〈scalar constant〉
| 〈var〉
| 〈var〉 "`" 〈attr〉
| 〈expr〉 〈binop〉 〈expr〉
| 〈unop〉 〈expr〉
| 〈var〉 "(" 〈expr〉 "," ... "," 〈expr〉 ")"
| "let" 〈var〉 "=" 〈expr〉 "in" 〈expr〉
| "if" 〈expr〉 "then" 〈expr〉 "else" 〈expr〉
| 〈var〉 "[" 〈array index 〉 "]"
| 〈var〉 "[" 〈array index 〉 "]" "[" 〈array index 〉 "]"
| 〈var〉 "[" 〈array index 〉 "]" "[" 〈array index 〉 "]" "[" 〈array index 〉 "]"
| "(" 〈expr〉 ":" 〈type〉 ")"
| "(" 〈expr〉 ")"

〈array index 〉 ::= 〈expr〉

〈simple array index 〉 ::= 〈scalar constant〉
| 〈var〉

〈array init〉 ::= 〈array ext1 〉
| 〈array ext2 〉
| 〈array ext3 〉
| "[" 〈array comprehension〉 "]"

〈array ext1 〉 ::= "[" 〈expr〉 "," ... "," 〈expr〉 "]"

〈array ext2 〉 ::= "[" 〈array ext1 〉 "," ... "," 〈array ext1 〉 "]"

〈array ext3 〉 ::= "[" 〈array ext2 〉 "," ... "," 〈array ext2 〉 "]"

〈array comprehension〉 ::= "[" 〈expr〉 "|" 〈index range〉, "," ... "," 〈index range〉 "]"

〈index range〉 ::= 〈id〉 "=" 〈array index 〉 "to" 〈array index 〉

68

Constants

〈scalar constant〉 ::= 〈intconst〉
| 〈boolconst〉
| 〈floatconst〉

〈array1 constant〉 ::= "[" 〈scalar constant〉 "," ... "," 〈scalar constant〉 "]"

〈array2 constant〉 ::= "[" 〈array1 constant〉 "," ... "," 〈array1 constant〉 "]"

Type expressions

〈type〉 ::= 〈simple type〉
| 〈type product〉
| 〈type〉 "->" 〈type〉

〈type product〉 ::= 〈simple type〉 ["*" 〈type product〉]

〈simple type〉 ::= "signed" "<" 〈size〉 ">"
| "unsigned" "<" 〈size〉 ">"
| "int"
| "int" ["<" 〈size〉 ">"]
| "int" ["<" 〈sign〉 "," 〈size〉 ">"]
| [〈simple types〉] 〈id〉 ["<" 〈size〉 ">"]
| 〈ty var〉
| 〈simple type〉 "array" "[" 〈size〉 "]"
| 〈simple type〉 "array" "[" 〈size〉 "]" "[" 〈size〉 "]"4

| "(" 〈type〉 ")"

〈simple types〉 ::= 〈simple type〉
| "(" 〈simple type〉 "," ... "," 〈simple type〉 ")"

〈size〉 ::= 〈int const〉
| 〈sz var〉

〈sign〉 ::= " signed" | " unsigned"

〈array size〉 ::= 〈int const〉

〈var type〉 ::= 〈type〉
| "{" 〈ctors〉 "}"
| "{" 〈intrange〉 "}"

〈ctors〉 ::= 〈con id〉 ["," 〈ctors〉]

〈intrange〉 ::= 〈intconst〉 ",..," 〈intconst〉
4t array[m][n] is actually syntactic sugar for t array[n] array[m].

69

Lexical Syntax

〈var〉 ::= 〈id〉

〈attr〉 ::= 〈id〉

〈id〉 ::= 〈letter〉 (〈letter〉 | 〈digit〉 | _ | ’)*

〈letter〉 ::= "a" | ... | "z"

〈con id〉 ::= 〈uid〉

〈ty var〉 ::= "$" 〈id〉

〈sz var〉 ::= 〈id〉

〈uid〉 ::= 〈uletter〉 (〈letter〉 | 〈digit〉 | _ | ’)*

〈uletter〉 ::= "A" | ... | "Z"

〈binop〉 ::= "+" | "-" | "*" | "/" | "mod" | "+." | "-." | "*." | "/." | "<" | ">" | "<=" | ">=" | "=" |
"!=" | "&&" | "||" | "land" | "lor" | "lxor" "<<" | ">>"

〈unop〉 ::= "-" | "!"

〈intconst〉 ::= ["-"]〈digit〉+

〈fixintconst〉 ::= [〈radix 〉] 〈digit〉+

〈radix 〉 ::= "Ox" | "Ob"

〈boolconst〉 ::= "true" | "false"

〈floatconst〉 ::= ["-"]〈digit〉+["."〈digit〉*][["e"|"E"]["+"|"-"]〈digit〉+]

〈string〉 ::= "¨" 〈char〉* "¨"

The following characters are considered as blanks: space, newline, horizontal tabulation, carriage
return, line feed and form feed.Comments are written in Java-style. They are single-line and start with
“--”.

The following identifiers are reserved as keywords, and cannot be employed otherwise:
type of net let in rec

if then else actor out var

rules stream to from when and

function const extern implemented systemc vhdl

true false or not lnot signed

unsigned array port init

The following character sequences are also keywords:
’< ’> -> <- .. << >> &&

|| >= <= != +. -. *. _

=. !=. >. <. >=. <=.

70

Chapter 4

Core Abstract Syntax

This chapter gives the abstract syntax of a simplified version of the CAPH language1. Compared to
the “full” CAPH language, this simplified version lacks :

• global type declarations,

• port declarations,

• external function declarations,

• rule formats (as defined in Sec. 2.4.4),

• guards in rules,

Moreover, types are limited to basic un-sized, un-signed, ints, bools and builtin variants.
The omitted features are either classical, and hence not specific to CAPH2, or just introduce too

much technical details in the definition of the typing rules and static and dynamic semantics3 without
interfering with the global soundness of the formal system.

program ::= program valdecls actdecls iodecls netdefns

valdecls ::= valdecl1 . . . valdecln n ≥ 0
valdecl ::= const id = expr [: tyexpr]

| fun id 〈var1, . . . , varn〉 → expr [: tyexpr] n ≥ 1

actdecls ::= actdecl1 . . . actdecln n ≥ 1
actdecl ::= actor id actparams actins actouts actvars actrules
actparams ::= param1 . . . paramn n ≥ 0

1Called Core-Caph in the sequel.
2This is the case for global type definitions for example, which are handled exactly like in all other ML-like languages.
3In Chap. 5, 6 and 7 resp.

71

actins, actouts ::= actio1 . . . action n ≥ 0
actvars ::= actvar1 . . . actvarn n ≥ 0
param, actio ::= id : tyexpr
actvar ::= id : tyexpr

| id : tyexpr = expr
rules ::= rule1 . . . rulen n ≥ 1
rule ::= 〈qpat1, . . . , qpatm〉→〈qexp1, . . . , qexpn〉 m,n ≥ 1
qpat ::= 〈qual, rpat〉
rpat ::= scalar const

| var
|
| con 〈rpat1, . . . , rpatn〉 n ≥ 0

qexp ::= 〈qual, expr〉
expr ::= const

| var
| con 〈expr1, . . . , exprn〉 n ≥ 0
| id (expr1, . . . , exprn) n ≥ 1
| if expr then expr else expr
| let var = expr in expr
| expr : tyexpr
| only in rule rhs

qual ::= id

iodecls ::= iodecl1 . . . iodecln n ≥ 0
iodecl ::= stream id tyexpr dir string
dir ::= from | to

netdecls ::= ndecl1 . . .ndecln n ≥ 1
ndecl ::= net [rec] 〈n binding1, . . . ,n bindingn〉
n binding ::= n pattern = n expr
n expr ::= | var

| const
| (n expr1, . . . ,n exprn) n ≥ 1
| n expr1 n expr2

| function n pattern → n expr
| let rec 〈n binding1, . . . , n bindingn〉 in n expr

n pattern ::= | var
| (n pattern1, . . . ,n patternn) n ≥ 1

tyexpr ::= tyctor 〈tyexpr1, . . . , tyexprn〉 n ≥ 0
| tyexpr1 × . . .× tyexprn n ≥ 1
| tyexpr1 → tyexpr2

const ::= int | bool

72

Chapter 5

Typing

This section gives the formal typing rules for the so-called Core CAPH language defined in Chap. 4.

The type language is fairly standard. A type τ is either1

• a type variable α

• a constructed type χ τ1 . . . τn,

• a functional type τ1 → τ2,

• a product type τ1 × . . .× τn,

A type schema σ is either

• a type τ ,

• a type scheme ∀α.σ.

For simplicity, conversions from type schemes to types (instanciation) and from types to type schemes
(generalisation) have been left implicit since the rules are completely standard.

Typing occurs in the context of a typing environment consisting of :

• a type environment T, recording type and value constructors (tycons and ctors resp.),

• a variable environments V, mapping identifiers to (polymorphic) types.

The initial type environment TE0 records the type of the builtin type and value constructors :
TE0.tycons = [int 7→ Int,bool 7→ Bool,

dc 7→ α→ Dc α]
TE0.ctors = [0 7→ Int,1 7→ Int, . . . ,

true 7→ Bool, false 7→ Bool
SoS 7→ Dc α,EoS 7→ Dc α,Data 7→ α→ Dc α]

The initial variable environment V E0 contains the types of the expression-level builtin primitives.
VE0 = [+ : Int× Int→ Int,

= : Int× Int→ Bool, . . .]

1Functional, product and enumerated types are here treated specially although they could be handled as ”normal”
constructed types.

73

5.1 Notations

Both type and variable environments are viewed as partial maps (from identifiers to types and from
type constructors to types resp.). If E is an environment, the domain and co-domain of E are denoted
by dom(E) and codom(E) respectively. The empty environment will be written ∅. [x 7→ y] denotes the
singleton environment mapping x to y. We will note E(x) the result of applying the underlying map
to x (for ex. if E is [x 7→ y] then E(x) = y). We denote by E[x 7→ y] the environment that maps x to
y and behaves like E otherwise. E ⊕ E′ denotes the environment obtained by adding the mappings of
E′ to those of E. If E and E′ are not disjoints, then the mappings of E are “shadowed” by those of

E′. We will also use a specialized version of the ⊕ merging operator, denoted
→
⊕, for which shadowing

is replaced by type unification: if x appears both in E and E′, and maps respectively to σ and σ′, then

it will map to unifyE(σ, σ′) in E
→
⊕ E′ (this simplifies the description of the semantics of definitions

for outputs). E 	 E′ denotes the environment obtained by removing any mapping {x 7→ y} for which
x ∈ dom(E′) from E.

When an environment E is composed of several sub-environments E′,E′′, . . . , we note E = {E′, E′′, . . .}
and use the dot notation to access these sub-environments (ex: E.E′).

For convenience and readability, we try to adhere to the following naming conventions throughout
this chapter :

Meta-variable Meaning
TE Type environment
VE Variable environment
ty Type expression
τ Type
σ Type scheme
α Type variable
χ Type constructor
c Value constructor
id Identifier

npat Pattern (network level)
nexp Network-level expression
qpat Qualified rule pattern (actor level)
rpat Rule pattern (actor level)
qexp Qualified rule expression (actor level)
exp Expression
qual Rule qualifier (actor level)

Syntactical terminal symbols are written in bold. Non terminals in italic. Types values are written
in serif.

74

5.2 Typing rules

5.2.1 Programs

TE,VE ` Program⇒ VE′

TE,VE0 ` valdecls⇒ VEv

TE,VE0 ⊕VEv ` actdecls⇒ VEa

TE ` iodecls⇒ VEi,VEo

TE,VE0 ⊕VEv ⊕VEa ⊕VEi ` netdecls⇒ VE′

TE0,VE0 ` program valdecls actdecls iodecls netdefns⇒ VE′
→
⊕ VEo

(Program)

5.2.2 Value declarations

TE,VE ` ValDecls⇒ VE′

∀i. 1 ≤ i ≤ n, TE,VEi−1 ` valdecli ⇒ VEi, VE0 = VE

TE,VE ` valdecl1 . . . valdecln ⇒ VEn

(ValDecls)

TE,VE ` exp⇒ τ

TE,VE ` const id = exp⇒ [id 7→ τ]
(ConstDecl1)

TE,VE ` exp⇒ τ TE ` ty⇒ τ ′ coercible(τ, τ ′)

TE,VE ` const id = exp : ty⇒ [id 7→ τ ′]
(ConstDecl2)

∀i. 1 ≤ i ≤ n, ` pati, τi ⇒ VEi VE′ =

n⊕
i=1

VEi

TE,VE⊕VE′ ` exp⇒ τ ′

TE,VE ` fun fid 〈pat1, . . . , patn〉 → exp⇒ [fid 7→ 〈τ1, . . . , τn〉 → τ ′]
(FunDecl1)

∀i. 1 ≤ i ≤ n, ` pati, τi ⇒ VEi VE′ =

n⊕
i=1

VEi

TE,VE⊕VE′ ` exp⇒ τ ′

TE ` ty⇒ τ ′′ coercible(〈τ1, . . . , τn〉 → τ ′, τ ′′)

TE,VE ` fun fid 〈pat1, . . . , patn〉 → exp : ty⇒ [fid 7→ τ ′′]
(FunDecl2)

75

where

` pat, τ ⇒ VE

means that declaring pat with type τ creates the variable environment VE.

The predicate coercible tells whether the infered type τ can be cast to the declared type τ ′. The
coercibility relation has been defined in Sec. 2.3.6.

5.2.3 Actor declarations

TE,VE ` ActorDecls⇒ VE′

∀i. 1 ≤ i ≤ n, TE,VE ` actdecli ⇒ VEi

TE,VE ` actdecl1 . . . actdecln ⇒
n⊕

i=1

VEi

(ActorDecls)

params 6= ∅
TE ` params⇒ τ,VEp

TE ` ins⇒ τ ′,VEi

TE ` outs⇒ τ ′′,VEo

TE,VE⊕VEp ` localvars⇒ VEv,TEv

TE⊕ TEv,VE⊕VEp ⊕VEv ⊕VEi ⊕VEo ` rules⇒ VEr

TE,VE ` actor id params ins outs localvars rules⇒ [id 7→ τ → τ ′ → τ ′′]
(ActorDecl1)

params = ∅
TE ` ins⇒ τ ′,VEi

TE ` outs⇒ τ ′′,VEo

TE,VE⊕VEp ` localvars⇒ VEv,TEv

TE⊕ TEv,VE⊕VEp ⊕VEv ⊕VEi ⊕VEo ` rules⇒ VEr

TE,VE ` actor id params ins outs localvars rules⇒ [id 7→ τ ′ → τ ′′]
(ActorDecl2)

Note that the type assigned to an actor only depends on its interface (parameters, inputs and
outputs). An actor a declared as

actor a (p1 : t1, . . . , pk : tk) in (i1 : t′1, . . . , im : t′m) out (o1 : t′′1 , . . . , on : t′′n)

will be assigned type

t1 × . . .× tk → t′1 × . . .× t′m → t′′1 × . . .× t′′n
whereas an actor a declared as

actor a in (i1 : t′1, . . . , im : t′m) out (o1 : t′′1 , . . . , on : t′′n)

will be assigned type

t′1 × . . .× t′m → t′′1 × . . .× t′′n

TE ` ActParams⇒ τ,VE

76

∀i. 1 ≤ i ≤ n, TE ` parami ⇒ τi,VEi

TE ` param1 . . . paramn ⇒ τ1 × . . .× τn,
n⊕

i=1

VEi

(ActParams)

TE ` ty⇒ τ

TE ` id : ty⇒ τ, [id 7→ τ]
(ActParam)

TE ` ActIOs⇒ τ,VE′

∀i. 1 ≤ i ≤ n, TE ` ioi ⇒ τi,VEi

TE ` io1 . . . ion ⇒ τ1 × . . .× τn,
n⊕

i=1

VEi

(ActIOs)

TE ` ty⇒ τ

TE ` id : ty⇒ τ, [id 7→ τ]
(ActIO)

VE,TE ` ActVars⇒ VE′,TE′

∀i. 1 ≤ i ≤ n, VE,TE ` vari ⇒ VEi,TEi

VE,TE ` var1 . . . varn ⇒
n⊕

i=1

VEi,

n⊕
i=1

TEi

(ActVars)

TE ` ty⇒ τ,TE′

VE,TE ` id : ty⇒ τ, [id 7→ τ],TE′
(ActVar)

TE ` ty⇒ τ,TE′ TE,VE ` exp⇒ τ ′ coercible(τ ′, τ)

VE,TE ` id : ty = exp⇒ [id 7→ τ],TE′
(ActVar’)

Typing of actor local variables is the only situation where the type environment TE can be aug-
mented. This happens when a variable is declared with an enumerated type. In this case, the (nullary)
enumerated constants are added, as nullary value constructors, to the type environment. Such decla-
rations can be viewed as purely local type declarations, since the scope of the declared constructors is
limited to the rule set of the enclosing actor).

Actor rules

TE,VE ` ActRules⇒ VE′

77

∀i. 1 ≤ i ≤ n, TE,VE ` rulei ⇒ τi

TE,VE ` rule1 . . . rulen ⇒ [1 7→ τ1, . . . , n 7→ τn]
(ActRules)

Typing the rule set produces a environment mapping rule numbers to types. Each rule can have a
distinct type.

TE,VE ` ActRule⇒ τ → τ ′

∀i. 1 ≤ i ≤ m, TE,VE ` qpati ⇒ τi,VE′i

∀j. 1 ≤ j ≤ n, TE,VE⊕
n⊕

i=1

VE′i ` qexpj ⇒ τ ′j

TE,VE ` 〈qpat1, . . . , qpatm〉 → 〈qexp1, . . . , qexpn〉 ⇒ τ1 × . . .× τm → τ ′1 × . . .× τ ′n
(ActRule)

Rule patterns

Typing a (qualified) rule pattern gives a type and an environment, mapping each identifier introduced
in the pattern to a type. The type is retrieved using the pattern qualifier.

TE,VE ` QPat⇒ τ,VE

VE(id) = Int

TE,VE ` 〈id, int〉 ⇒ Int, ∅
(RPatConstInt)

VE(id) = Bool

TE,VE ` 〈id, int〉 ⇒ Bool, ∅
(RPatConstBool)

VE(id) = τ

TE,VE ` 〈id, var〉 ⇒ τ, [var 7→ τ]
(RPatVar)

VE(id) = τ

TE,VE ` 〈id, 〉 ⇒ τ, ∅
(RPatWild)

VE(id) = τ TE.ctors(c) = τ

TE,VE ` 〈id, c 〈〉〉 ⇒ τ, ∅
(RPatCon0)

VE(id) = τ TE.ctors(c) = τ1 × . . .× τn → τ
∀i. 1 ≤ i ≤ n,TE,VE ` qpati ⇒ τi, VEi

TE,VE ` 〈id, c 〈qpat1, . . . , qpatn〉〉 ⇒ τ,

n⊕
i=1

VEi

(RPatCon)

5.2.4 Expressions

TE,VE ` QExp⇒ τ

78

TE,VE ` exp⇒ τ VE(id) = τ

TE,VE ` 〈id, exp〉 ⇒ τ

The infered type for a qualified expression must match the type assigned to the corresponding output
or local variable.

TE,VE ` Exp⇒ τ

TE,VE ` int/bool⇒ Int/Bool
(EConst)

VE(id) = τ

TE,VE ` id⇒ τ
(EVar)

TE,VE ` ⇒ α
(EWild)

TE.ctors(c) = τ

TE,VE ` c 〈〉 ⇒ α
(ECon0)

TE.ctors(c) = τ1 × . . .× τn → τ
∀i. 1 ≤ i ≤ n, TE,VE ` expi ⇒ τi

TE,VE ` c 〈exp1, . . . , expn〉 ⇒ τ
(ECon)

VE(id) = τ1 × . . .× τn → τ ′

∀i. 1 ≤ i ≤ n, TE,VE ` expi ⇒ τi

TE,VE ` id (exp1, . . . , expn) ⇒ τ ′
(EApp)

TE,VE ` exp⇒ Bool TE,VE ` exp1 ⇒ τ VE,TE ` exp2 ⇒ τ

TE,VE ` if exp then exp1 else exp2 ⇒ τ
(ECond)

`p id, τ ′ ⇒ VE′ TE,VE ` exp2 ⇒ τ ′ TE,VE⊕VE′′ ` exp1 ⇒ τ

TE,VE ` let id = exp2 in exp1 ⇒ τ
(ELet)

TE,VE ` exp⇒ τ TE ` ty⇒ τ ′ coercible(τ, τ ′)

TE,VE ` exp : ty⇒ τ ′
(ECoerce)

5.2.5 IOs

TE ` IoDecls⇒ VEi,VEo

∀i. 1 ≤ i ≤ n, TE ` iodecli ⇒ VEi,VEo

TE ` iodecl1 . . . iodecln ⇒
n⊕

i=1

VEi,

n⊕
i=1

VEo

(IoDecls)

TE ` ty⇒ τ

TE ` stream id ty from id’⇒ [id 7→ τ],∅
(StreamDecl)

79

TE ` ty⇒ τ

TE ` stream id ty to id’⇒ ∅, [id 7→ τ]
(StreamDecl)

5.2.6 Network declarations

TE,VE ` NetDecls⇒ VE′

VE0 = VE ∀i. 1 ≤ i ≤ n, TE,VEi−1 ` netdecli ⇒ VEi

VE ` netdecl1 . . . netdecln ⇒ VEn

(NetDecls)

TE,VE ` NetDecl⇒ VE′

∀i. 1 ≤ i ≤ n, TE,VE ` nbind⇒ VEi VE′ =

n⊕
i=1

VEi

TE,VE ` net 〈nbind1, . . . , nbindn〉 ⇒ VE⊕VE′
(NetDecl)

∀i. 1 ≤ i ≤ n, TE,VE⊕VE′ ` nbind⇒ VEi VE′ =

n⊕
i=1

VEi

TE,VE ` net rec 〈nbind1, . . . , nbindn〉 ⇒ VE⊕VE′
(NetRecDecl)

TE,VE ` NetBind⇒ VE′

TE,VE ` nexp⇒ τ `p npat, τ ⇒ VE′

TE,VE ` npat = nexp ⇒ VE′
(NetBind)

Patterns

The following rules are used to handle pattern binding at the network level :

`p NPat, τ ⇒ VE

`p id, τ ⇒ [id 7→ τ]
(NPatVar)

∀i. 1 ≤ i ≤ n, `p npat i, τi ⇒ VEi

`p (npat 1, . . .npat n), τ1 × . . .× τn ⇒
n⊕

i=1

VEi

(NPat Tuple)

where

`p npat, τ ⇒ VE

means that declaring npat with type τ creates the variable environment VE.

80

Network Expressions

TE,VE ` NExp⇒ τ

VE(id) = τ

TE,VE ` id⇒ τ
(NVar)

TE,VE ` int/bool⇒ Int/Bool
(NConst)

∀i. 1 ≤ i ≤ n, VE ` nexpi ⇒ τi

TE,VE ` (nexp1, . . . nexpn)⇒ τ1 × . . .× τn
(NTuple)

VE ` nexp1 ⇒ τ → τ ′ VE ` nexp2 ⇒ τ

TE,VE ` nexp1 nexp2 ⇒ τ ′
(NApp)

`p npat , τ ⇒ VE′ VE⊕VE′ ` nexp⇒ τ ′

TE,VE ` function npat → nexp⇒ τ → τ ′
(NFun)

`p npat , τ ′ ⇒ VE′ VE ` nexp2 ⇒ τ ′ VE⊕VE′ ` nexp1 ⇒ τ

TE,VE ` let nonrec npat =nexp2 in nexp1 ⇒ τ
(NLet)

`p npat , τ ′ ⇒ VE′ VE⊕VE′ ` nexp2 ⇒ τ ′ VE⊕VE′ ` nexp1 ⇒ τ

TE,VE ` let rec npat =nexp2 in nexp1 ⇒ τ
(NLet Rec)

5.2.7 Type expressions

TE ` ty⇒ τ,TE′

TE.tycons(χ) = τ

TE ` χ⇒ τ,∅
(TyCon0)

TE.tycons(χ) = τ1 × . . .× τn → τ
∀i. 1 ≤ i ≤ n, TE ` tyi ⇒ τi,∅

TE ` χ 〈ty1, . . . , tyn〉 ⇒ τ,∅
(TyCon)

∀i. 1 ≤ i ≤ n, TE ` tyi ⇒ τi,∅
TE ` ty1 × . . .× tyn ⇒ τ1 × . . .× τn,∅

(TyTuple)

TE ` ty⇒ τ,∅ ` ty′ ⇒ τ ′,∅
TE ` ty → ty′ ⇒ τ → τ ′,∅

(TyFun)

tyname, τ = new tyname()

TE ` enum〈c1, . . . , cn〉 ⇒ τ, {tycons = [tyname 7→ τ]; ctors = [c1 7→ τ, . . . , cn 7→ τ]}
(TyEnum)

The function new tyname generates a fresh type name and type constructor.

81

TE ` ty⇒ τ

TE ` ty⇒ τ,TE′

TE ` ty⇒ τ

The main originality here is the introduction of local, anonymous declarations for enumerated types.
These declarations are given when declaring local variables within actors. The scope of the implicitely
declared type is limited to the enclosing actor. As a result, typing a type expression may result in an
updated type environment, which is reflected in the signature of the above rules.

82

Chapter 6

Static semantics

The static semantics of CAPH programs is in the form of a set of boxes interconnected by wires. Boxes
result from the instanciation of actors and wires from the data dependencies expressed in the definition
section.

The static semantics is built upon the semantic domain SemVal given below.
In the semantic rules, tuples will be denoted 〈x1, . . . , xn〉. The size of a tuple t will be denoted |t|.

The notation D∗ is used to define the domain of all tuples of D: 〈〉, 〈D〉, 〈D,D〉, . . . The notation
D+ is used to define the domain of all non-empty tuples of D: 〈D〉, 〈D,D〉, . . . A single value and
a tuple of size one will be considered as semantically equivalent (this simplifies the description of the
rule dealing with the instanciation of actors). We will use the notation . to denote the ”dont care”
(wildcard) value in rules (in order to avoid confusion with the ”dont care” value at the syntactical level
().

If E is an environment, and f a function, then we denote by Πf (E) the environment obtained by ap-
plying f to each element of codom(E) : Πf (E) = {x 7→ f(E(x)), x ∈ dom(E)}. If F is a set {f1, . . . , fn}
of functions, then we abbreviate ΠF (E) the successive applications Πf1(Πf2(. . .Πfn(E) . . .)).

83

Variable Set ranged over Definition Meaning
v EVal Int + Bool + ETuple

+ECon + EPrim
+EFun + Unknown Expression-level semantic value

ι Int {. . . ,−2,−1, 0, 1, . . .}
β Bool {true, false} Builtin constant
c ECon id EVal∗ Constructed value
vs ETuple EVal+ Expression-level Tuple
EE EEnv {id 7→ EVal} Expression-level environment
ρ NVal Loc + Act + Clos + Tuple

+Box + Wire + NEVal Network-level semantic value
NE NEnv {id 7→ NVal} Network-level environment
ρs NTuple NVal+ Network-level tuples
cl Clos 〈n pattern,n expr,NEnv〉 Network-level closure
a Act 〈id, id∗, id∗, id∗, {id 7→ expr}, rules〉 Static actor description
` Loc 〈bid, sel〉 Location
b Box 〈id, btag, {id 7→ EVal}, {id 7→ EVal} Box

{id 7→ wid}, {id 7→ wid}, rules)
t btag BBox + BIn + BOut + BDummy Box tag
w Wire 〈〈bid, sel〉, 〈bid, sel〉〉 Wire
ρ′ NEVal Int + Bool
B {bid 7→ Box} Box environment
W {wid 7→Wire} Wire environment
l, l’ bid {1, 2, . . .} Box id
k, k’ wid {1, 2, . . .} Wire id
s, s’ sel {1, 2, . . .} Slot indexes

The semantic categories EVal (for expression-level values), Tuple and Clos are classical. The seman-
tic category NEVal is used to wrap a subset of expression-level semantic values (integer and boolean
constants) as network values. This is required to be able to manipulate actor parameters at the network
level. Unknown values are used for uninitialized actor variables.

Act values describe actors. An actor is a 6-tuple consisting of

• a name,

• a list of parameter names,

• a list of input and output names,

• a list of local variables, with an optional expression describing the initial value,

• a list of rules.

Note that initial value of actor variables is described as an unevaluated expression since the corre-
sponding semantic value can only be computed when the actor is instanciated as a box (it may depend
on the actual value of the actor parameters, set at the network level).

The actor rules are just copied from the abstract syntaxt representation, since the static semantics
does not deal with the behavior of actors (actors are essentially viewed as “black boxes” at this level).
They will be used by the dynamic semantics.

Box values describe boxes (instanciated actors). A box is a 7-tuple consisting of

84

• the name of corresponding actor,

• a tag, for distinguishing “ordinary” boxes (resulting from the instanciation of actors) from boxes
corresponding to i/o streams1,

• a list of parameters, with their actual values,

• a list of local variables, with their actual values,

• a list of inputs and outputs slots, each associating a name with a wire index,

• a list of rules (copied verbatim from the actor description).

Wire values are used to describe interconnexions between boxes. Each box has a unique index (bid).
A location (Loc) identifies a given i/o slot of a box (inputs and outputs are numbered from 1 to n). So
wires are actually described by a pair of locations.

Semantic rules are given in a context consisting of

• a type environment TE recording type constructors2,

• a expression-level environment EE, mapping identifiers to expression-level semantic values,

• a network-level environment NE, mapping identifiers to network-level semantic values,

• a box environment B, mapping indexes to boxes,

• a wire environment W, mapping indexes to wires.

The notations for accessing and manipulating environments are similar to those defined in chapter 5.
Empty environments are noted ∅.

1The tag BDummy is used internally for handling recursive definitions.
2This environment is required for evaluating type coercion operations.

85

6.1 Programs

TE0,EE0 ` Program⇒ TE,EE,NE,B,W

TE,EE ` valdecls⇒ EE′

TE,EE′ ` actdecls⇒ NEa

TE ` strdecls⇒ NEs,B
TE,EE⊕ EE′,NEa ⊕NEs,B ` netdecls⇒ B′,W′

W′ ` B⊕ B′ ⇒ B′′

TE,EE ` program valdecls actdecls strdecls netdecls ⇒ TE,EE′,NEa,B
′′,W′

(Program)

The initial environment EE contains the internal value3 of the expression-level builtin primitives (+,
-, . . .).

The result consists of

• a type environment, containing the declared type constructors4,

• an expression-level environment, containing the declared constants and functions,

• a network-level environment, containing the declared actors.

• a indexed set of boxes and wires, describing the network,

Evaluation of network-level definitions produces a set of boxes and a set of wires, in which the latter
refer to the former. The last subgoal of the previous rule – detailed in the following rules – makes boxes
also refer to the wires (a kind of “reverse-wiring” step).

W ` B⇒ B′

∀i. 1 ≤ i ≤ n, W ` bi ⇒ b’i

W ` {b1, . . . , bn} ⇒ {b’1, . . . , b’n}

W ` b⇒ b′

W ` bid, bins⇒ bins′ W ` bid, bouts⇒ bouts′

W ` bid 7→ 〈id, tag, bparams, bins, bouts〉 ⇒ bid 7→ 〈id, tag, bparams, bins’, bouts’〉

W ` bid, bios⇒ bios′

3Function from semantic values to semantic values.
4These constructors are required to evaluate cast expressions.

86

∀i. 1 ≤ i ≤ n, W ` bid, i⇒ widi

W ` bid, {id1 7→ 0, . . . , idn 7→ 0} ⇒ {id1 7→ wid1, . . . , idn 7→ widn}

W ` bid, sel⇒ wid

W(k) = 〈., 〈bid, sel〉〉
W ` bid, sel⇒ k

6.2 Value declarations

TE,EE ` ValDecls⇒ EE′

∀i. 1 ≤ i ≤ n, TE,EEi−1 ` valdecli ⇒ EEi, EE0 = ∅
TE ` valdecl1 . . . valdecln ⇒ EEn

(ValDecls)

A value definition can only refer to a value defined before (hence the order of declaration is relevant).

TE,EE ` exp⇒ v is static const(v)

TE,EE ` const id = exp⇒ [id 7→ v]
(ConstDecl)

The predicate is static const is true only for integer and boolean constants.

TE,EE ` fun id = pat → exp⇒ [id 7→ EFun(pat, exp)]
(FunDecl)

6.3 Expressions

This set of rules is classical. Note that the type environment TE is needed to process cast expressions.

TE,EE ` Exp⇒ v

TE,EE ` int/bool⇒ Int/Bool
(EConst)

EE(id) = v

TE,EE ` id⇒ v
(EVar)

∀i. 1 ≤ i ≤ n, TE,EE ` expi ⇒ vi

TE,EE ` con 〈exp1, . . . , expn〉 ⇒ ECon 〈v1, . . . , vn〉
(ECon)

EE(id) = EPrim f
∀i. 1 ≤ i ≤ n, TE,EE ` expi ⇒ vi

f(v1, . . . , vn) = v

TE,EE ` id (exp1, . . . , expn)⇒ v
(EFunApp1)

87

Rule EFunApp1 deals with the application of builtin functions. For each function f , we assume
that f(v1, . . . , vk) denotes the proper resulting value, provided that k is equal to the function arity and
that the arguments v1, . . . , vk are of the proper type5.

EE(id) = EFun 〈〈id1, . . . , idn〉, exp〉
∀i. 1 ≤ i ≤ n, TE,EE ` expi ⇒ vi

TE,EE⊕ [id1 7→ v1, . . . , idn 7→ vn] ` exp⇒ v

TE,EE ` id (exp1, . . . , expn)⇒ v
(EFunApp2)

Rule EFunApp2 deals with the application of globally defined functions. It follows the classical call-
by-value strategy (the function expression is evaluated in an environment augmented with the bindings
resulting from binding its pattern to the argument).

TE,EE ` exp2 ⇒ v TE,EE⊕ [id 7→ v] ` exp1 ⇒ v′

TE,EE ` let id= exp2 in exp1 ⇒ v′
(ELet)

TE,EE ` exp⇒ true TE,EE ` exp1 ⇒ v

TE,EE ` if exp then exp1 else exp2 ⇒ v
(ECond0)

TE,EE ` exp⇒ false TE,EE ` exp2 ⇒ v

TE,EE ` if exp then exp1 else exp2 ⇒ v
(ECond1)

TE,EE ` exp⇒ v TE ` ty⇒ τTE ` coerce(v, τ) = v′

TE,EE ` exp : ty⇒ v′
(ECast)

The function coerce coerces a value to a given type. Coercibility has been checked by the at the
typing stage. The coercibility relation and the behavior of the coerce function have been defined in
Sec. 2.3.6.

6.4 Actor declarations

TE,EE ` ActorDecls⇒ NE

∀i. 1 ≤ i ≤ n, TE,EE ` actdecli ⇒ NEi

TE,EE ` actdecl1 . . . actdecln ⇒
n⊕

i=1

NEi

(ActorDecls)

` params⇒ params′

` ins⇒ ins′

` outs⇒ outs′

` vars⇒ vars′

TE,EE ` actor id params ins outs vars rules
⇒ [id 7→ Act 〈id,params′, ins′, outs′, vars′, rules〉]

(ActorDecl)

The rule ActorDecl builds Act semantic values from the corresponding description at the abstract
syntax level.

5This is ensured by the the type cheking stage.

88

` params/ins/outs⇒ params′/ins′/outs′

` id1 : ty1 . . . idn : tyn ⇒ {id1, . . . , idn}
(ActorParamsInsOuts)

` vars⇒ vars′

∀i. 1 ≤ i ≤ n, ` vari ⇒ EEi

` var1 . . . varn ⇒
n⊕

i=1

EEi

(ActorVars)

` var⇒ var′

` id : ty = exp⇒ [id 7→ exp]
(ActVar)

6.5 Stream declarations

TE ` StreamDecls⇒ NE,B

∀i. 1 ≤ i ≤ n, ` strdecli ⇒ NEi,Bi

TE ` strdecl1 . . . strdecln ⇒
n⊕

i=1

NEi,

n⊕
i=1

Bi

(StreamDecls)

b = 〈id,BIn, 〈〉, 〈〉, 〈”o” 7→ 0〉〉 l = NewBid()

TE ` stream id ty from id’⇒ [id 7→ Loc(l, 1)], [l 7→ b]
(InStreamDecl)

b = 〈id,BOut, 〈〉, 〈”i” 7→ 0〉, 〈〉〉 l = NewBid()

TE ` stream id ty to id’⇒ [id 7→ Loc(l, 1)], [l 7→ b]
(OutStreamDecl)

Each stream declaration creates a new box and enters the corresponding location in the environment.
The BIn (resp. BOut) boxes have no parameter, no input (resp. output). Wire identifiers in the input
(resp. output) list are set to 0 at this stage. They will be updated when all definitions have been
processed (see last sub-goal of rule Program).

The function NewBid returns a new, fresh box index (i.e. an index l such as l 6∈ Dom(B)).

89

6.6 Network declaration

This section only deals with non recursive declarations. Recursive declarations are handled in Sec. 6.6.2.

TE,EE,NE ` NetDecls⇒ NE′,B,W

∀i. 1 ≤ i ≤ n, TE,EE,NEi−1,Bi−1,Wi−1 ` netdecli ⇒ NEi,Bi,Wi NE0 = NE

TE,EE,NE ` netdecl1, . . . ,netdecln ⇒ NEn, Bn, Wn

(NetDecls)

TE,EE,NE,B,W ` NetDecl⇒ NE′,B′,W′

∀i. 1 ≤ i ≤ n, TE,EE,NE,B,W ` npati=nexpi ⇒ NEi,Bi,Wi

NE′ =

n⊕
i=1

NEi, B′ =

n⊕
i=1

Bi, W′ =

n⊕
i=1

Wi

TE,EE,NE,B,W ` net 〈npat1=nexpr1, . . . ,npatn=nexprn〉 ⇒ NE⊕NE′,B⊕ B′,W⊕W′

(NetDecl)

TE,EE,NE,B,W ` 〈npat1=nexpr1, . . . , npatn=nexprn〉 ⇒ NE′,B′,W′

∀i. 1 ≤ i ≤ n, TE,EE,NE,B,W ` npati=nexpi ⇒ NEi,Bi,Wi

NE′ =

n⊕
i=1

NEi, B′ =

n⊕
i=1

Bi, W′ =

n⊕
i=1

Wi

TE,EE,NE,B,W ` 〈npat1=nexpr1, . . . ,npatn=nexprn〉 ⇒ NE⊕NE′,B⊕ B′,W⊕W′
(NetBindings)

TE,EE,NE,B,W ` npat=nexpr⇒ NE′,B′,W′

TE,EE,NE ` nexp⇒ v,B′,W′ NE,B′ `n npat, v⇒ NE′,W′′

TE,EE,NE,B,W ` npat = nexp⇒ NE⊕NE′, B⊕ B′, W⊕W′ ⊕W′′
(NetBinding)

Each definition potentially augments the variable environment and the box and wire sets. Evaluating
an expression potentially creates boxes and wires. Binding a pattern may only create wires.

Network-level pattern binding is handled using the following rules, where

NE,B `n npat, ρ⇒ NE′,W′

means that in the context of NE and B binding npat to value ρ results in a network-level environment
NE and a set of wires W′.

NE,B `n NPat, ρ⇒ NE′,W

90

NE,B `n id , ρ⇒ [id 7→ ρ], ∅
(TNPatVar)

∀i. 1 ≤ i ≤ n, NE,B `n npati, ρi ⇒ NEi, Wi

NE,B `n (npat1, . . . ,npatn), 〈ρ1, . . . , ρn〉 ⇒
n⊕

i=1

NEi,

n⊕
i=1

Wi

(TNPatTuple)

NE(id) = Loc(l′, 1) ρ = Loc(l, s) B(l) = 〈BOut, . . .〉 k = NewWid()

NE,B `n id , ρ⇒ ∅, [k 7→ 〈〈l, s〉, 〈l′, 1〉〉]
(TNPatOutput)

The last rule handes the case where a an identifier previously declared as a stream output is bound
to an expression. In this case, a wire is inserted, connecting the box resulting from the evaluation of
this expression to the box which has been created when instanciating the stream output.

The function NewWid returns a new, fresh wire index (i.e. an index k such as k 6∈ Dom(W)).

6.6.1 Network expressions

Here the rules are fairly standard, except for those dealing with instanciation of actors and recursive
let definitions.

TE,EE,NE ` NExp⇒ ρ,B,W

NE(id) = ρ

TE,EE,NE ` id ⇒ ρ, ∅, ∅
(NNVar)

EE(id) = v, wrapable(v)

TE,EE,NE ` id ⇒ NEVal(v), ∅, ∅
(NEVar)

The value of an identifier appearing in a network expression is searched first in the network-level
environment and, if this fails, in the expression-level environment. The predicate wrapable indicates
whether an expression-level value v can be wrapped as network-level value (in other words whether this
value can be used as a parameter value for an actor). It is only true for Int and Bool constants.

TE,EE ` int/bool⇒ NEVal(Int/Bool)
(NEConst)

∀i. 1 ≤ i ≤ n, NE ` nexpi ⇒ ρi,Bi,Wi

TE,EE,NE ` (nexp1, . . . ,nexpn)⇒ 〈v1, . . . , vn〉,
n⊕

i=1

Bi,

n⋃
i=1

Wi

(NTuple)

TE,EE,NE ` function npat → nexp ⇒ Clos(npat,nexp,NE), ∅, ∅
(NFun)

TE,EE,NE, ∅, ∅ ` 〈npat1=nexp1, . . . ,npatn=nexpn〉 ⇒ NE′,B,W
TE,EE,NE⊕NE′ ` nexp2 ⇒ ρ,B′,W′′

TE,EE,NE ` let 〈npat1=nexp1, . . . ,npatn=nexpn〉 in nexp2 ⇒ ρ, B, W
(NLetDef)

The above rule is for non recursive definitions. Recursive definitions are handled in Sec. 6.6.2.

91

The following rules deals with applications.

Rule NAppClo deals with the application of closures and follows the classical call-by-value strategy
(the closure body is evaluated in an environment augmented with the bindings resulting from binding
its pattern to the argument).

TE,EE,NE ` nexp1 ⇒ Clos(npat,nexp,NE′),B,W
TE,EE,NE ` nexp2 ⇒ ρ,B′,W′

NE,B `n npat, ρ⇒ NE′′, .
NE′ ⊕NE′′ ` nexp⇒ ρ′,B′′,W′′

TE,EE,NE ` nexp1 nexp2 ⇒ ρ′,B⊕ B′ ⊕ B′,W ∪W′ ∪W′′
(NAppClo)

Rules NAppAct1 and NAppAct2 deals with the instanciation of actors. Both insert a new box
and a set of new wires connecting the argument to the inputs of the inserted box. The former deals
with actors with parameters, the latter with actors without parameters.

TE,EE,NE ` nexp1 ⇒
Act〈id, 〈p1, . . . , pq〉, 〈i1, . . . , im〉, 〈o1, . . . , on〉, [v1 7→ exp1, . . . , vk 7→ expk], rules〉, B′,W′

∀i. 1 ≤ i ≤ k, TE, EE⊕
q⊕

i=1

[pi 7→ v′i] ` expi ⇒ vi

TE,EE, NE ` nexp2 ⇒ 〈NEVal(v′1), . . . ,NEVal(v′q)〉,B′,W′
TE,EE, NE ` nexp3 ⇒ 〈Loc(l1, s1), . . . , Loc(lm, sm)〉,B′′,W′′

b = 〈id,BBox, [p1 7→ v′1, . . . , pq 7→ v′q], [v1 7→ v1, . . . , vk 7→ vk], 〈bi1, . . . , bim〉, 〈bo1, . . . , bon〉, rules〉
l = NewBid()

∀j. 1 ≤ j ≤ m, kj = NewWid(), wj = Wire〈〈lj , sj〉, 〈l, j〉〉
∀j. 1 ≤ j ≤ m, bij = 〈ij , 0〉
∀j. 1 ≤ j ≤ n, boj = 〈oj , 0〉

W′′′ = {k1 7→ w1, . . . , km 7→ wm}
TE,EE,NE ` nexp1 nexp2 nexp3

⇒ 〈Loc(l, 1), . . . , Loc(l, n)〉, [l 7→ b]⊕ B′′ ⊕ B′ ⊕ B, W′′′ ∪W′′ ∪W′ ∪W
(NAppAct1)

TE,EE,NE ` nexp1 ⇒
Act〈id, 〈〉, 〈i1, . . . , im〉, 〈o1, . . . , on〉, [v1 7→ exp1, . . . , vk 7→ expk], rules〉, B′,W′

∀i. 1 ≤ i ≤ k, TE,EE ` expi ⇒ vi

TE,EE, NE ` nexp2 ⇒ 〈Loc(l1, s1), . . . , Loc(lm, sm)〉,B′′,W′′
b = 〈id,BBox, [], [v1 7→ v1, . . . , vk 7→ vk], 〈bi1, . . . , bim〉, 〈bo1, . . . , bon〉, rules〉 l = NewBid()

∀j. 1 ≤ j ≤ m, kj = NewWid(), wj = Wire〈〈lj , sj〉, 〈l, j〉〉
∀j. 1 ≤ j ≤ m, bij = 〈ij , 0〉
∀j. 1 ≤ j ≤ n, boj = 〈oj , 0〉

W′′′ = {k1 7→ w1, . . . , km 7→ wm}
TE,EE,NE ` nexp1 nexp2

⇒ 〈Loc(l, 1), . . . , Loc(l, n)〉, [l 7→ b]⊕ B′′ ⊕ B′ ⊕ B, W′′′ ∪W′′ ∪W′ ∪W
(NAppAct2)

6.6.2 Recursive network definitions

Recursive definitions may appear both within network expressions or at the network declaration level.

92

TE,EE,NE ` NExp⇒ ρ,B,W

TE,EE,NE, ∅, ∅ ` 〈npat1=nexp1, . . . ,npatn=nexpn〉rec ⇒ NE′,B,W
TE,EE,NE⊕NE′ ` nexp2 ⇒ ρ,B′,W′′

TE,EE,NE ` let rec 〈npat1=nexp1, . . . ,npatn=nexpn〉 in nexp2 ⇒ ρ, B, W
(NLetRecDef)

TE,EE,NE,B,W ` NetRecDecl⇒ NE′,B′,W′

TE,EE,NE, ∅, ∅ ` 〈npat1=nexp1, . . . ,npatn=nexpn〉rec ⇒ NE′,B′,W′

TE,EE,NE,B,W ` net rec 〈npat1=nexp1, . . . ,npatn=nexpn〉 ⇒ NE⊕NE′,B⊕ B′,W⊕W′

(NetRecDecl)

Both cases are handled with a common rule NetRecBindings. This rule supports only two kinds
of recursive bindings :

• all the bound identifiers are functions,

• all the bound identifiers wires.

In the former case, the result is a circular closure (or a set of mutually recursive closures in case of
multiple bindings).

In the latter case, the recursively defined values correspond to cycles in the network.

Recursive functions

TE,EE,NE,B,W ` 〈npat1=nexpr1, . . . , npatn=nexprn〉rec ⇒ NE′,B′,W′

∀i. 1 ≤ i ≤ n, NEi = [id 7→ cli]
∀i. 1 ≤ i ≤ n, cli = Clos(npati,nexpi,NE⊕NE′)]

NE′ =

n⊕
i=1

NEi

TE,EE,NE ` 〈 id1= function npat1 → nexp1, . . . , idn= function npatn → nexpn〉rec
⇒ NE′,∅,∅

(NRecBindingsF)

Recursive wires

If the defined value is not a function, then the recursively defined values correspond to cycles in the
network. Evaluation is then carried out as follows:

1. First, we create a recursive environment NE′, by binding each identifier occuring in the LHS
patterns to the location of a temporary, freshly created, box with tag BDummy. This can be
formalized with the following set of rules:

`r NPat⇒ NE,B

93

b = 〈id,BDummy, 〈〉, 〈”i” 7→ 0〉, 〈”o” 7→ 0〉〉 l = NewBid()

`r id ⇒ [id 7→ Loc(l, 0)], [l 7→ b]

∀i. 1 ≤ i ≤ n, `r npati ⇒ NEi, Bi

`r (npat1, . . . ,npatn)⇒
n⊕

i=1

NEi,

n⊕
i=1

Bi

2. Second, all the RHS expressions are evaluated in an environment augmented with NE′. The
resulting values are bound to the LHS patterns using the usual rules defined in section 6.6,
leading an environment NE′′.

3. Third, for each identifier r occuring in the recursive environment NE′, we build a substitution
φ = {u 7→ v}, where u = NE′(r) = Loc(l, s) and v = NE′′(r) = Loc(l′, s′). This results in a set Φ
of substitutions.

4. Fourth, we apply each φ ∈ Φ to the set W′ of wires produced by the evaluation of the expressions
evaluated at step 2. More precisely, we replace each pair 〈γ, γ′〉 ∈W′ by 〈φ(γ), φ(γ′)〉, where φ(γ)
is defined as follows:

if φ = {Loc(k, s) 7→ Loc(k′, s′)} and γ = Loc(l, s′′) then

φ(γ) =

{
Loc(k′, s′) if l = k,

γ otherwise.
(6.1)

The process can be summarized in the following rule:

∀i. 1 ≤ i ≤ n, `r npati ⇒ NE′i,Bi

NE′ =

n⊕
i=1

NE′i B =

n⊕
i=1

Bi

∀i. 1 ≤ i ≤ n, TE,EE,NE′ ⊕NE ` nexpi ⇒ ρi,B
′
i,W

′
i

∀i. 1 ≤ i ≤ n, NE,B `n npati, ρi ⇒ NE′′i ,W
′′′
i

NE′′ =

n⊕
i=1

NE′′i

Φ = {NE′(r) 7→ NE′′(r), ∀r ∈ dom(NE′)}
W′′ = ΠΦ(W′)

TE,EE,NE ` 〈npat1=nexp1, . . . ,npatn=nexpn〉rec ⇒ NE′′,B′,W′′
(NRecBindingsV)

94

Chapter 7

Dynamic semantics

This semantics is the one used to define the reference interpreter.
It is defined in an axiomatic style. It assumes that type-checking has been properly carried out and

that all translations defined by the static semantics are valid and have been properly carried out.

7.1 Semantic domain

The dynamic semantics is given in terms of the semantic domain DVal defined below. We use the
same notations than for the static semantics for tuples, environments, etc. In addition, we denote by
E[x 7→ y] the environment that maps x to y and behaves like E otherwise. We write [] to denote the
empty list and [a, b, c] for the list containing the elements a, b and c. The concatenation of two lists is
written l1 ++ l2. If h is a suitable element and t is a (possibly empty) list, then h :: t is the list obtained
by prepending h to t; while t++[h] denotes the list obtained by attaching element h at the end of list t.
The cardinality of a list l is denoted by |l|.

Variable Set ranged over Definition Meaning
v DVal EVal + Unknown Expression-level semantic value

EE EEnv {id 7→ DVal} Dynamic environments
π Process 〈{id 7→ DVal}, Processes

{id 7→ cid}, {id 7→ cid},
{id 7→ DVal}, Rule∗, RIndex〉

r Rule 〈QPat+,QExp+〉 Actor rule
qpat’ QPat 〈Qual, id,Pat〉 Qualified rule pattern
qexp’ QExp 〈Qual, id,Exp〉 Qualified rule expression

q Qual In + Out + Var Qualifier
theta Channel 〈bool,bool, [DVal]〉 Channels
P, I,A {pid 7→ Process} Process environment

C {cid 7→ Channel} Channel environment
B {bid 7→ Box} Box environment
W {wid 7→Wire} Wire environment
l, l’ pid {1, 2, . . .} Process ids
k, k’ cid {1, 2, . . .} Channel ids

j RIndex {0, 1, . . .} Rule index

Expression-level semantic values are the same as those defined for the static semantics, with the

95

addition of an Unknown value for dealing with uninitialized local variable.

Processes are the dynamic view of boxes. They consist of

• a list of parameters (mapping names to values),

• a list of inputs and outputs (mapping names to channel ids),

• a list of local variables (mapping names to values),

• a list of rules.

• a rule index, indicating the current fireable rule for an active process (rules are numbered from 0
to Nr; 0 means that no rule is fireable)

Channels are the dynamic view of wires. They consist of

• two boolean flags indicating whether the channel is ready for reading (not empty) and ready for
writing (not full).

• a list of memorized values (modeling the buffering capabilities of the channel),

7.2 Programs

TE0,EE0 ` Program⇒ P,C

TE0,EE0 ` program valdecls actdecls strdecls netdecls ⇒ TE,EE,NE,B,W
TE,EE,NE ` B⇒ P `W⇒ C

EE0 ⊕ EE,C ` P⇒ C′,P′

SE0,TE0,EE0 ` program valdecls actdecls strdecls netdecls ⇒ C′,P′
(Program)

The program is first translated to set of type, expression-level, network-level, box and wire environ-
ments according to the static semantics. Boxes and wires are turned into initial sets of processes and
channels and the processes are executed. The result is an final set of processes (in which no process can
be executed any longer) and channels.

7.2.1 Conversion from boxes to processes

TE,EE,NE ` B⇒ P

∀i. 1 ≤ i ≤ n, TE,EE,NE ` bi ⇒ πi

W ` {l1 7→ b1, . . . , ln 7→ bn} ⇒ {l1 7→ π1, . . . , ln 7→ πn}

TE,EE,NE ` b⇒ π

96

b = 〈id ,BBox,params, vars,bins〉boutsrules
` bins⇒ ins
` bouts⇒ outs

ins, outs, vars ` rules⇒ rules’

` l 7→ b ⇒ l 7→ 〈params, ins, outs, vars, rules’〉

` bins/bouts⇒ ins/outs

∀i. 1 ≤ i ≤ n, ` widi ⇒ cidi

` {id1 7→ wid1, . . . , idn 7→ widn} ⇒ {id1 7→ cid1, . . . , idn 7→ cidn}

` wid⇒ cid

` wid = i

` wid⇒ i

Identifying wire and channel ids simplifies the translation of box ios.

The following rules refine the qualification of each pattern (resp. expression) appearing in the actor
rules.

ins, outs, vars ` rules⇒ Rules

∀i. 1 ≤ i ≤ n, ins, outs, vars ` rulei ⇒ Rule

ins, outs, vars ` {rule1, . . . , rulen} ⇒ {rule’1, . . . , rule’n}

ins, outs, vars ` rule⇒ Rule

∀i. 1 ≤ i ≤ m, ins, outs, vars ` qpati ⇒ qpat’i
∀i. 1 ≤ i ≤ n, ins, outs, vars ` qexpi ⇒ qexp’i

ins, outs, vars ` 〈qpat1, . . . , qpatm〉→〈qexp1, . . . , qexpn〉
⇒ 〈qpat’1, . . . , qpat’m〉→〈qexp’1, . . . , qexp’n〉

ins, outs, vars ` qpat⇒ QPat

ins, outs, vars ` id⇒ q

ins, outs, vars ` 〈id, pat〉 ⇒ 〈q, id, pat〉

97

ins, outs, vars ` qexp⇒ QExp

ins, outs, vars ` id⇒ q

ins, outs, vars ` 〈id, exp〉 ⇒ 〈q, id, exp〉

ins, outs, vars ` id⇒ q

q =

In if id ∈ ins,

Out if id ∈ outs,

Var if id ∈ Dom(vars)

ins, outs, vars ` id⇒ q

7.2.2 Conversion from wires to channels

`W⇒ C

∀i. 1 ≤ i ≤ n, ` wi ⇒ ci

W ` {k1 7→ w1, . . . , kn 7→ wn} ⇒ {k1 7→ c1, . . . , kn 7→ cn}

` Wire⇒ Channel

` 〈〈l, s〉, 〈l′, s′〉〉 ⇒ 〈false, true, []〉

Channels are initially empty, ready for writing and herit their id from the corresponding wire.

7.3 Processes

Execution of processes proceeds by successive synchronous cycles. Each execution cycle can be decom-
posed into 2 steps :

1. processes are split into two subsets : the active (A) subset and inactive (I) subset; a process is
active iff at least one of its rules is fireable

2. all active processes are executed; during execution, a process can read values from its input
channels, updates local variables and write values to its output channels.

Execution cycle are repeated until the active set becomes empty. The separation of each cycle into two
steps ensures that the order in which the processes are executed at step 2 does not matter (as long as
the channel have sufficient capacity). This synchronous style of scheduling, in which all active processes
are executed at each cycle is coherent with a “hardware-oriented” interpretation of processes1.

1A more more “software-oriented” view could prefer to execute only one process at a time.

98

EE,C ` P⇒ C′,P′

EE,C ` P⇒ I,A EE,C ` I,A⇒ C′,P′

EE,C ` P⇒ C′,P′
(EvalPs)

EE,C ` I,A⇒ C′,P′

EE,C ` I, {} ⇒ C, I
(RunPs0)

A 6= {}
EE ` C,A⇒ C′,A′

EE,C′ ` A′ ∪ I⇒ I′,A′′

EE,C′ ` I′,A′′ ⇒ C′′,P′′

EE,C ` I,A⇒ C′′,P′′
(RunPs1)

EE,C ` P⇒ C′,P′

P = {π1, . . . , πn}
∀i. 1 ≤ i ≤ n, EE,Ci−1 ` πi ⇒ Ci, π

′
i C0 = C C′ = Cn

P′ = {π′1, . . . , π′n}
EE,C ` P⇒ C′,P′

(ExecPs)

7.3.1 Identifying and marking active processes

EE,C ` P⇒ P,P′

∀i. 1 ≤ i ≤ n, EE,C ` πi ⇒ Ii,Ai

EE,C ` {π1, . . . , πn} ⇒
n⋃

i=1

Ii,

n⋃
i=1

Ai

(SplitPs)

EE,C ` π ⇒ P,P′

EE,C ` π ⇒ β, π′ if β then {}, {π′} else {π′}, {}
EE,C ` π = I, A

(SplitP)

EE,C ` π ⇒ Bool, π′

99

π = 〈., ., ., ., 〈r1, . . . , rn〉, .〉
∃j. 1 ≤ j ≤ n, EE,C, π ` rj ⇒ true

π′ = 〈., ., ., ., 〈r1, . . . , rn〉, j〉
EE,C ` π ⇒ true, π′

π = 〈., ., ., ., 〈r1, . . . , rn〉, .〉
∀j. 1 ≤ j ≤ n, EE,C, π ` rj ⇒ false

π′ = 〈., ., ., ., 〈r1, . . . , rn〉, 0〉
EE,C ` π ⇒ false, π′

A process is active if at least one of its rules is fireable. The semantics described here does not tell
which rule is selected when several are fireable. It is therefore non-deterministic. Making it deterministic
is straightforward, by assigning an fixed index to each rule and by requiring that the rule with the lowest
(or highest) index is always selected, for example. Determinism is of course a highly desirable property
for hardware implementations. For software implementations, other strategies can be chosen. For
example, one could implement fair matching – like in hume [6] – by reordering rules after selection to
ensure that each fireable rule is eventually selected.

EE,C, π ` Rule⇒ Bool

∀i. 1 ≤ i ≤ m, C, π ` qpati ⇒ βi
∀i. 1 ≤ i ≤ n, C, π ` qexpi ⇒ β′i

EE,C, π ` 〈qpat1, . . . , qpatn〉 → 〈qexp1, . . . , qexpn〉 ⇒ β1 ∧ . . . ∧ βm ∧ β′1 ∧ . . . ∧ β′n
(FireableRule)

A process rule is fireable if all its LHS patterns and RHS expressions are ready.

The following rules specify when an rule pattern is ready, depending on whether this pattern is
attached to a local variable or an input channel.

C, π ` QPat⇒ Bool

π.vars(id) = v `p pat, v⇒ β,EE′

C, π ` 〈Var, id,pat〉 ⇒ β

Patterns attached to variables are ready as soon as the value of the variable matches the pattern.

C, π ` 〈In, id, 〉 ⇒ true

Ignored inputs are always ready.

π.ins(id) = k C(k) = 〈false, ., .〉
C, π ` 〈In, id,pat〉 ⇒ false

Inputs connected to empty input channels are not ready.

100

pat 6= π.ins(id) = k C(k) = 〈true, ., v :: vs〉
`p pat, v⇒ β,EE′

C, π ` 〈In, id,pat〉 ⇒ β

Inputs connected to an non-empty channel are ready iff the first available value in the channel
matches the corresponding rule pattern.

The three following rules specify when an rule expression is ready, depending on whether this
expression is attached to a local variable or an output channel.

C, π ` QExp⇒ Bool

C, π ` 〈Var,.,.〉 ⇒ true
(OutVarRdy)

Variables are always ready for updating.

C, π ` 〈Out, id, 〉 ⇒ true

Ignored outputs are always ready.

pat 6= π.outs(id) = k C(k) = 〈., β, .〉
C, π ` 〈Out, id,pat〉 ⇒ β

(OutChanRdy)

An non-ignored output is ready for iff the connected channel can be written (is not full).

7.3.2 Individual process execution

Execution of an active process is done as follows :

1. retrieve the index of the selected fireable rule (there must be one, since the process has been
tagged as active)

2. bind the rule LHS patterns to the corresponding values (consuming the values on the involved
input channels)

3. add these bindings to an environment containing global values, actor parameters and actor local
variables,

4. evaluate the RHS of the selected rule in this environment, environment producing values to update
outputs and local variables

EE,C ` π ⇒ C′, π′

π = 〈params, ., ., vars, 〈r1, . . . , rn〉〉j 1 ≤ j ≤ n
rj = 〈qpat, qexps〉

C, π ` qpats⇒ EE′,C′

EE⊕ EE′ ⊕ params⊕ varsC′, π ` qexps⇒ C′′, π′

EE,C ` π ⇒ C′′, π′
(ExecP)

101

Binding of rule patterns

C, π ` QPats⇒ EE′,C′

Ci−1, π ` qpati ⇒ EEi,Ci C0 = C

C, π ` 〈qpat1, . . . , qpatn〉 ⇒
n⊕

i=1

EEi, Cn

(BindRPats)

The previous rule creates a local environment by binding the patterns of the rule RHS. The four
next rules details the process of pattern matching depending on whether the pattern is attached to a
variable or an input channel.

C, π ` QPat⇒ EE′,C′

C, π ` 〈Var, id, 〉 ⇒ ∅,C
(MatchVar1)

rpat 6= π.vars(id) = v `p rpat, v⇒ EE

C, π ` 〈Var, id, rpat〉 ⇒ EE,C
(MatchVar2)

C, π ` 〈In, id, 〉 ⇒ ∅,C
(MatchInp1)

rpat 6= π.ins(id) = k C(k) = 〈true, β, v :: vs〉
c′ = 〈|vs > 0|, β, vs〉
`p rpat, v⇒ true,EE′

C, π ` 〈In, id, rpat〉 ⇒ EE′,C[k← c′]
(MatchInp2)

When a pattern is attached to an input channel, the value is consummed on this channel (except
when the pattern is).

Pattern matching

Pattern matching at the rule level is handled using the following rules, where `p rpat, v ⇒ Bool,EE,
means that binding rpat to value v succeeds or not and results in a dynamic environment EE :

`p RPat, v⇒ Bool,EE

` int/bool v’, Int/Bool v⇒ v’ = v,∅

` var v’, v⇒ true, [v’ 7→ v]

` , v⇒ true,∅

102

con 6= con′

` con〈rpat1, . . . , rpatn〉, con′〈v1, . . . , vn〉 ⇒ false,∅

con = con′ ∀i. 1 ≤ i ≤ n, `p rpati, vi ⇒ βi,EEi

` con〈rpat1, . . . , rpatn〉, con′〈v1, . . . , vn〉 ⇒ β1 ∧ . . . ∧ βn,

n⊕
i=1

EE

Evaluation of rule expressions

EE,C, π ` QExps⇒ C′, π′

C0 = C π0 = π ∀i. 1 ≤ i ≤ n, EE,Ci−1, πi1 ` qexpi ⇒ Ci, πi

EE,C, π ` 〈qexp1, . . . , qexpn〉 ⇒ Cn, πn
(EvalQExps)

EE,C, π ` QExp⇒ C′, π′

π = 〈. . . , vars, . . .〉 EE ` exp⇒ v π′ = 〈. . . , vars[id← v], . . .〉
EE,C, π ` 〈Var, id, exp〉 ⇒ C, π′

(UpdVar)

A variable update is directly reflected in the process local state.

EE,C, π ` 〈Out, id, 〉 ⇒ C, π
(UpdOut1)

Nothing happens when an output is assigned the value (ignore).

exp 6= π.outs(id) = k C(k) = 〈., true, vs〉 EE ` exp⇒ v
c′ = 〈true, true, vs ++[v]〉

EE,C, π ` 〈Out, id, exp〉 ⇒ C[k← c′], π
(UpdOut 2)

Updating an output channel adds the value at the end of the channel buffer (FIFO behavior).
The above semantics assumes undbounded FIFOs (the written channel is always ready for writting).
Assuming FIFOs with a finite capacity κ would just require modifying the last premisse of the above
rule into :

c′ = 〈true, |vs ++[v]| < κ, vs ++[v]〉

103

Chapter 8

Model of Computation

In this chapter, we describe a model of computation (MoC) which can be used to describe the behavior
of CAPH programs. The goal is threefold.

First is to place CAPH on the “map” of dataflow-based formalisms and languages, which is generally
organized in terms of associated MoCs (KPN, DPN, SDF, CSDF, . . .), for the sake of comparison and
communication.

Second is to give a formal description of the behavior of CAPH programs at a higher level than that
provided by the structural operational semantics rules given in chapter 7.

Third is a to settle the basis for a mechanism allowing (when applicable) the static computation of
FIFO sizes.

The CAPH MoC is a variant of the Dataflow Process Network model. We therefore start by recalling
the main features of the DPN model, in Sec. 8.1. The CAPH MoC is presented in this context in Sec. 8.2.
In Sec. 8.2.7 we discuss the application of this model to the third of the objectives listed above, namely
the prediction of FIFO sizes.

8.1 Dataflow Process Networks

The Dataflow Process Network (DPN) model has been introduced and formalized by Lee and Parks
in [4]. It can be viewed as a generalization of the Kahn Process Network model introduced by Kahn
in [7]. The presentation of the DPN model in this section is directly inspired by that given in [4], with
slight variations in the notations in order to ease the derivation of the CAPH MoC from it.

In the DPN model, a program is a collection of processes communicating through unidirectional,
unbounded FIFO channels. Both read and write from/to these channels are unblocking1. Each FIFO
channel carries a sequence of tokens and each process consists of repeated firings of a dataflow actor.
Each firing can read (and possibly consumes) tokens on the channels connected to the input ports and
can write (produce) tokens on the output ports of the corresponding actor.

In the DPN model, each token carries a value x taken from an uninterpreted domain D.

Channels contains (ordered, finite or infinite) sequences of tokens. A sequence will be denoted

X = [x1, x2, . . .] where xi ∈ D ∀i
1This is the main distinction with the KPN model, where write is unblocking but read is always blocking.

104

We will write [] for the empty sequence and denote v the classical prefix ordering relation between
sequences. For example

[x1, x2] v [x1, x2, x3]

and

[] v [x1]

The behavior of an actor with m input ports and m′ output ports is the defined by a set R of N firing
rules

R = {R1, R2, . . . , RN}

where each firing rule Ri is defined as a set of m rule input patterns and m′ rule output
patterns

Ri = {Ri,1, . . . , Ri,m, R
′
i,1, . . . , R

′
i,m′}

A rule input pattern is a (finite, possibly empty) sequence of input patterns

Ri,j = [p1, p2, . . . , pn] (j ∈ {1, . . . ,m}, n ≥ 0)

where a input pattern p is either

• a constant value x ∈ D,

• the wildcard pattern ∗.

A rule output pattern is a (finite, possibly empty) sequence of wildcard patterns2

R′i,j = [∗1, ∗2, . . . , ∗n′] (j ∈ {1, . . . ,m}, n′ ≥ 0)

The context of a process is a, ordered set composed of the input sequences {X1, . . . , Xm} present on
the m channels connected to the input of this actor.

A rule Ri is said to be fireable in a context C = {X1, . . . , Xm} if and only if

∀j = 1, . . . ,m Ri,j |=r Xj

2A rule output pattern then simply indicates how many of tokens produced on a given output port when the corre-
sponding rule is fired, regardless of the actual values carried by these tokens.

105

where |=r is the relation indicating whether a given input sequence Xj “matches” the correspond-
ing rule pattern Ri,j . This relation can be defined recursively as follows, using “:” as the sequence
concatenation operator3 :

[] |=r X ∀X
p : ps |=r x : xs iff p |=p x and ps |=r xs

and where the pattern matching relation |=p is defined as follows :

∗ |=p x ∀x ∈ D
x |=p x′ iff x = x′

As an example, consider an actor with m = 3 inputs and m′ = 2 outputs and the following firing rule

R1 = {[∗, ∗], [], [1], [∗], [∗, ∗]}

This rule will be fireable in any context C = {X1, X2, X3} in which

• X1 contains at least two unconsummed tokens (regardless of their value),

• X3 contains at least one token with value equals to 1,

• X2 contains any sequence (possibly, but not necessarily, empty).

and, when fired, it produces one token on the first output port and two tokens on the second.

An actor is said to be fireable in a given context if at least one of its rules is fireable. If, in any case,
at most one rule is fireable, the actor is said to be deterministic.

A classical example of a DPN actor is that described in Fig. 8.1. This actor reads a token carrying a
boolean value on its third input and, depending on this value, copy the token present on its first or
second input to its output. The behavior of the select actor can be described by a set of two firing
rules {R1, R2} where

R1 = {[∗], [], [true], [∗]}
R2 = {[], [∗], [false], [∗]}

select

Figure 8.1: The select actor

The signature |Ri| of a firing rule Ri gives the number of tokens consummed on each input channel
and produced on each output channel when the rule is fired :

3x1 : [x2, x3, . . .] = [x1, x2, x3, . . .].

106

|Ri| = {|Ri1 |, . . . , |Ri,m|, |R′i1 |, . . . , |R
′
i,m′ |}

where the “length” of the rule pattern Ri,j is defined as

|Ri,j | = |[pi,j,1, . . . , pi,j,n]|
= n

For example, for the select actor introduced above, we have

|R1| = {1, 0, 1, 1}
|R2| = {0, 1, 1, 1}

The set of rule signatures can be used to refine the model of computation of an actor. For example, an
actor which consumes (resp. produces) a fixed number of tokens on each input (resp. output) at each
activation, i.e. an actor for which

|Ri| = {k1, . . . , km, k
′
1, . . . , k

′
m′} ∀i = 1, . . . , N

is categorized as belonging to SDF (Synchronous Dataflow) model of computation.

8.2 The Caph Process Network model

The model of computation for CAPH – let’s call it CPN, for Caph Process Network – can be viewed
as a variant of the DPN model summarized in the previous section. The variations concern the type of
values carried by tokens on the one hand and the form of the patterns used to define the firing rules on
the other hand.

8.2.1 Token values

The set of values carried by tokens is obtained by enriching the basic domain D used in the DPN model
with two types of structured values :

• tuples of atomic values, denoted (x1, . . . , xn) (where n ≥ 1 and xi are atomic values),

• constructed values, of the form χ (x1, . . . , xn) where n ≥ 1, χ is a n-ary value constructor (taken
from a predefined set of constructors Con) and the xis are atomic values.

Formally, we therefore define the domain D of token values in the CPN model as

D := a atomic value (int, bool, . . .)

| (a1, . . . , an) (tuples)

| χ (a1, . . . , an) where χ ∈ Con (constructed values)

107

8.2.2 Rule patterns

In the CPN model, rule patterns cannot have a length ≥ 1 :

∀i = 1, . . . , N, ∀j = 1, . . . ,m |Ri,j | ∈ {0, 1}
∀j = 1, . . . ,m′ |R′i,j | ∈ {0, 1}

In other words, deciding whether a given rule is fireable can only involve the first token present of each
input sequence and the activation of a rule can produce at most one token of each output. The main
reason for this is that it allows hardware implementations to rely on a simple, fixed-interface FIFO
model4. Moreover, our experience, based upon a large set of realistic applications, showed that this
restriction does not in practice limit the expressiveness of the language.

8.2.3 Patterns

The set of individual patterns is augmented to accomodate the new definition of the domain D for
values :

p := ∗ (wildcard pattern)

| c ∈ D (constant pattern)

| v ∈ Var (variable pattern)

| (p1, . . . , pn) (tuple pattern)

| χ (p1, . . . , pn) (constructed pattern)

Variable patterns are used to bind values associated to tokens to names in order to use them in for
constructing the outputs of a given rule.

8.2.4 Pattern matching

The pattern matching relation |=p defined in Sec. 8.1 is modified as follows to take account the previous
modifications :

∗ |=p a ∀a
c |=p a iff x = a

v |=p a ∀a
(p1, . . . , pn) |=p (a1, . . . , an) iff pi |=p ai ∀j = 1, . . . , n

χ′ (p1, . . . , pn) |=p χ (a1, . . . , an) iff χ = χ′ and pi |=p ai ∀j = 1, . . . , n

8.2.5 Example

Figure 8.2 shows an actor defined in CAPH and the three firing rules defining the behavior of this actor
in the CPN model of computation.

8.2.6 Classification of CAPH actors

The rule signatures of an actor can be used to classify the behavior of this actor into three categories :
SDF, CSDF and DDF.

4Allowing an actor to read – and a fortiori “pop” – n > 1 tokens from a FIFO requires a significantly more complex
interface, especially if n cannot be computed statically.

108

type opt = None | Some of i n t ;

actor f oo
in (i 1 : opt , i 2 : i n t)
out (o : i n t)

rules
| (i 1 : Some x) −> x
| (i 1 : None , i 2 : 0) −> 1
| (i 1 : None , i 2 : y) −> y

;

R1 = {[Some x], [], [∗]}
R2 = {[None, [0], [∗]}
R3 = {[None, [y], [∗]}

Figure 8.2: A CAPH actor and the associated firing rules in the corresponding model of computation

SDF Actors

SDF (Synchronous Data Flow) actor are those for which all firing rules have the same signature

|Ri| = {ρ1, . . . , ρm, ρ
′
1, . . . , ρ

′
m′} ∀i = 1, . . . , N

The CAPH model of computation imposes that ρj ∈ {0, 1} ∀j = 1, . . . ,m and ρ′j ∈ {0, 1} ∀j =
1, . . . ,m′. But for an SDF actor, having ρj = 0 (resp. ρ′j = 0) would mean that this actor never con-

sumes (resp. produces) a token on the jth input (resp. output) channel. There’s no loss in expressivity
in excluding this type of behaviors. As a result, SDF actors in CAPH are those for which all firing rules
have a signature

|Ri| = {1, . . . , 1, 1, . . . , 1}

Listings 8.1 and 8.2 give two examples of actors which can classified as SDF. The add actor operates
(here) on unstructured streams os signed integers whereas the scale actor operates on streams struc-
tured as lists using the dc type5. For both actors, each rule consumes and produces exactly one token
when fired6.

Listing 8.1: A simple SDF actor in CAPH� �
actor add

in (i 1 : s igned<s>, i : s igned<s>)
out (o : s igned<s>)

rules
| (i 1 : x1 , i 2 : x2) −> o : x1+x2 −− Rule R1 ({1 ,1 , 1})
;� �

Listing 8.2: Another SDF actor� �
actor s c a l e (k : unsigned<s>)

in (i : unsigned<s> dc)

5The type t dc is a variant type. Values belonging to this type can be either the constant constructors SoS or EoS

(Start of Structure or End of Structure or the constructed value Data v, where v has type t.
6The signature of the rules has been here indicated as a comment. In practice, it will be computed by the compiler.

109

out (o : unsigned<s> dc)
rules
| i : SoS −> o : SoS −− Rule R1 ({1 , 1})
| i : Data (v) −> o : Data (v∗k) −− Rule R2 ({1 , 1})
| i : EoS −> o : EoS −− Rule R3 ({1 , 1})
;� �
CSDF Actors

For CSDF (Cyclo Static Data Flow) actors, several firing rules, with distinct signatures, coexist but
the order at which these rules are fired is statically predictable. The behavior of such an actor can
generally be described as a finite state machine whose transitions depend solely on the value of local
variables (and not on the value of tokens read on inputs).

An example of actor which can be classified as CSDF is given is Listing 8.3. The switch actor7

reads tokens on its input channel and alternatively routes them to its first (“left”) and second (“right”)
output. This is accomplished using the local variable s, which is alternately set to the (enumerated)
values Left and Right. Given the input stream

x1, x2, x3, x4, x5, x6 . . .

it produces the following output streams on its first and second output

x1, x3, x5, . . .

x2, x4, x6, . . .

Listing 8.3: A simple CSDF actor in CAPH� �
actor switch

in (i : $1)
out (o1 : $1 , o2 : $1)
var s : {Left , Right} = Lef t
rules
| (s : Left , i : v) −> (o1 : v , s : Right) −− Rule R1
| (s : Right , i : v) −> (o2 : v , s : Le f t) −− Rule R2

;� �
The signature of the first and second rule are respectively |R1| = {1, 1, 0} and |R2| = {1, 0, 1} but

is should be clear from the definition of these rules that they fire alternatively and cyclically as follows

R1, R2, R1, R2, R1, . . .

In fact, this property can be established formally using a technique known as abstract interpretation.
Application of this technique to the classification of dataflow actors has been described for example
in [12]. It can here prove that the only sequence of values that the local variable s can take is

Left, Right, Left, Right, ...

7This actor has already been described in Sec. 2.4.4.

110

which is sufficient to prove that the rules fires in the aforementionned order.

Another example of CSDF actor is given in Listing 8.4. The sample actor8 performs n → 1
subsampling. Given the input stream

x1, x2, x3, x4, x5, x6 . . .

it produces the output stream
xn, x2n, x3n, . . .

Using abstract interpretation, it is still possible to classify the sample actor as CSDF, as soon as the
value of its parameter n is known9. For example, Fig. 8.3 gives the FSM obtained by instanciating this
actor with n = 4, from which it is possible to predict this cyclic sequence of consumption/production
rates on (i,o) :

{1, 0}, {1, 0}, {1, 0}, {1, 1}, {1, 0}, {1, 0}, {1, 0}, {1, 1}, . . .

Listing 8.4: A n→ 1 subsampling actor� �
actor sample (n : i n t)

in (i : $t)
out (o : $t)

var k : { 1 , . . , n} = 1
rules
| i : x when k<n −> k : k+1
| i : x when k=n −> (k : 1 , o : x)
;� �

s=0

s=1R1 (k=0) s=2R1 (k=1)

s=3

R1 (k=2)
R2 (k=3)

Figure 8.3: FSM for the sample actor with n = 4

DDF Actors

This category (Dynamic Data Flow) gathers all actors which cannot be classified as SDF or CSDF. For
such actor it is not possible to statically predict the consumption/production rate on the I/O channels
because this rate ultimately depends on the value of the tokens read by the actor.

A first example of DDF actor is given in listing 8.5. The bswitch actor is a variant of the switch actor
described in the previous section. It routes the token read on its first input to either its first or second

8Which is taken from the CAPH standard library.
9This underlines a important distinction between the definition of an actor, in which the behavior may depend on

formal parameters (such as n in the current example), and the actual instances of this actor in the program graph (boxes
in the CAPH terminology), in which all parameters have been bound to values.

111

output depending on the (boolean) value of its second input. For example, given the following input
streams on inputs i1 and i2 o respectively

0, 1, 2, 3, 4, 5, . . .

true, false, false, true, false, true, . . .

it will produce the output streams on the outputs o1 and o2

0, 3, 5, . . .

1, 2, 4, . . .

Because the selection of fired rule depends on the value read on input i2, it is not possible to statically
decide which one will be selected and hence predict the production rate on the outputs.

Listing 8.5: A simple DDF actor in CAPH� �
actor bswitch

in (i 1 : $t , i 2 : bool)
out (o1 : $t , o2 : $t)
rules
| (i 1 : x , i 2 : t rue) −> o1 : x −− Rule R1 ({1 ,1 , 1 ,0})
| (i 1 : x , i 2 : f a l s e) −> o2 : x −− Rule R2 ({1 ,1 , 0 ,1})

;� �
A second, example of a DDF actor is described in listing 8.6. This actor10 operates on a structured
stream composed of a sequence of lists, each list starting with a SoL (StartOfList) token and ending
with a EoL (EndOfList) token. For each list, it computes the sum of the elements. For example, if

i = SoL, 1, 2, 3, EoL, SoL, 4, 5, EoL, . . .

then

o = 6, 21, . . .

For this, it uses pattern matching on the input to detect the start and end of each list and two local
variables : a local state (state), indicating whether the actor is waiting for a new list or computing
the sum, and a accumulator (sum) for computing the sum. The three transition rules can be read as
follows :

• if we are in state S0 and input token is “SoL”, then initialize sum to 0 and go to state S1;

• if we are in state S1 and input token is a data, then add the corresponding value to the accumulator.

• if we are in state S1 and input token is “EoL”, then writes the accumulated sum to output and
go back to state S0;

This style of description, in which the size of the processed data structures is neither hard-coded nor
provided using “external” parameters is actually very common in CAPH. It allows the formulation of
actors being able to operate on data structures (lists, images, . . .) of any size.

10Also previously described in Sec. 2.4.4.

112

Listing 8.6: Another DDF actor� �
type $t l i s t =

SoL
| EoL
| Data of $t ;

actor suml
in (i : s igned<16> l i s t)
out (o : s igned<16>)

var s t a t e : { S0 , S1 } = S0
var sum : i n t
rules
| (s t a t e : S0 , i : SoL) −> (sum : 0 , s t a t e : S1) −− Rule R1 ({1 , 0})
| (s t a t e : S1 , i : Data v) −> (sum : sum+v) ; −− Rule R2 ({1 , 0})
| (s t a t e : S1 , i : EoL) −> (o : sum , s t a t e : S0) −− Rule R3 ({1 , 1})
;� �

As for the bswitch actor, the exact sequence of rule firings cannot be predicted at compile time. In
fact, and provided that the input stream is well structured11, the sequence of firings can be described
as

{1, 0}, {1, 0}, . . . , {1, 0}︸ ︷︷ ︸
n activations

, {1, 1}

where n depends on the actual length of the input lists and hence cannot be predicted.

Implementation

A prototype implementation of MoC-based actor classification has been implemented in the CAPH
compiler since version 2.8.4.

Classification is obtained by invoking the compiler with the -infer_mocs option. Results are written
in a file named <prefix>_mocs.dat, where <prefix> is the name of the application12. They can also
be obtained with -dump_boxes option.

It is important to note that classification actually operates on boxes and not on the actors themselves.
This is because this classification can depend on the actual value of actor parameters, which are only
known when actors are instanciated as boxes in the final process network.

As an example, consider the program given in Fig. 8.4. In this program, the actors switch, bswitch
and sample are those introduced in the previous sections and their code has not been reproduced. The
merge actor reads one token on each of its inputs and alternatively writes that read on the first (resp.
second) input to its output.

Classification is performed by invoking the compiler as follows (assuming that the program is con-
tained in file main.cph, in directory test) :� �
caphc −infer mocs main . cph� �
This gives the following output

11I.e. that it is effectively constituted of successive lists, otherwise, the actor simply blocks.
12As specified with the -prefix option or, by default, the current directory name.

113

actor switch . . .

actor bswitch . . .

actor sample (n : i n t) . . .

actor merge
in (i 1 : $t , i 2 : $t)
out (o : $t)

var s t : {Left , Right} = Lef t
rules
| (s t : Left , i 1 : x , i 2 : y) −> (o : x , s t :

Right)
| (s t : Right , i 1 : x , i 2 : y) −> (o : y , s t :

Le f t)
;

stream i 1 : s igned<8> from ” sample1 . txt ” ;
stream i 2 : bool from ” sample2 . txt ” ;
stream o1 : s igned<8> to ” r e s u l t 1 . txt ” ;
stream o2 : s igned<8> to ” r e s u l t 2 . txt ” ;

net (s1 , s2) = switch i 1 ;
net (s3 , s4) = bswitch (s2 , i 2) ;
net o1 = sample 2 s1 ;
net s5 = sample 4 s3 ;
net o2 = merge (s5 , s4) ;

4:o2

3:o1

2:i2

6:bswitch

 w2:bool

1:i1

5:switch

 w1:signed<8>

 w3:signed<8>

7:sample(2)

 w4:signed<8>

8:sample(4)

 w6:signed<8>

9:merge

 w7:signed<8>

 w5:signed<8>

 w8:signed<8>

 w9:signed<8>

Figure 8.4: Example program for MoC-based actor classification

� �
This i s the Caph compiler , v e r s i on 2 . 8 . 4
. . .
> Running abs t r a c t i n t e r p r e t e r on box B5(switch) to i n f e r Moc . . . Done .
> Running abs t r a c t i n t e r p r e t e r on box B6(bswitch) to i n f e r Moc . . . Done .
> Running abs t r a c t i n t e r p r e t e r on box B7(sample) to i n f e r Moc . . . Done .
> Running abs t r a c t i n t e r p r e t e r on box B8(sample) to i n f e r Moc . . . Done .
Wrote f i l e . / test mocs . dat� �

The contents of the generated test_mocs.dat file is given in Fig. 8.5. In this listing

• the first column gives the box identifier (as defined as a prefix number in the dataflow graph
shown in Fig. 8.4),

• the second column gives the name of the instanciated actor,

• the third column gives the name of the infered MoC (sdf, csdf or ddf),

• the fourth column, in case of a sdf (resp. csdf) model, gives the box signature (resp. cyclic
sequence of signatures).

This result shows that the compiler has correctly infered the model for each box. Note, in particular,
the difference in the infered sequence of signatures for the two instances of the sample actor (boxes B7
and B8), due to the dependance of the activation sequence on the value of the parameter n of the actor.

114

B5; switch; csdf; [1,1,0],[1,0,1]

B6; bswitch; ddf

B7; sample; csdf; [1,0],[1,1]

B8; sample; csdf; [1,0],[1,0],[1,0],[1,1]

B9; merge; sdf; 1,1,1

Figure 8.5: Result of MoC-based box classification for the program of Fig. 8.4

As evidenced by the compiler output reproduced above, classification was here obtained using ab-
stract interpretation.

The abstract interpreter used for MoC-based classification is based upon a modified version of
the dynamic semantics described in chapter 7, in which a special value (typically noted ⊥) is used
to represent values which cannot be statically evaluated (such the values carried by input tokens for
instance). The interpreter iteratively fires the analysed box until one of the following conditions is met :

1. an execution cycle is detected (in other words, the value of all known local variables is the same
as it was at the first activation),

2. the number of firings exceeds a given predefined limit.

The first condition is the one occuring for SDF for CSDF actors. The second condition is used to detect
DDF actors (with the assumption that CSDF actors generally have “short” periods and, hence, that a
sufficiently large value for the limit will be discriminant).

It is possible to trace the execution of the abstract interpreter by inkoking the compiler with the
-absint option with the identifier of the target box as argument13. For our example, invoking the
compiler as follows� �
caphc −infer mocs −abs in t 8 main . cph� �
gives the following output� �
This i s the Caph compiler , v e r s i on 2 . 8 . 4
. . .
> abs t r a c t i n t e r p r e t a t i o n o f box B8(sample) . . .
> c y c l e detec ted at t =4:
> [k=1] i : x , k<n −> k : k+1 [1 , 0]
> [k=2] i : x , k<n −> k : k+1 [1 , 0]
> [k=3] i : x , k<n −> k : k+1 [1 , 0]
> [k=4] i : x , k=n −> k : 1 , o : x [1 , 1]
> done� �

This trace shows how the classification of box B8 as CSDF here results from the detection of a cycle
(of length 4) in the sequence of rule activations.

8.2.7 Static computation of FIFO sizes

A potential application of actor classification can be the static computation of FIFO sizes.
Predicting the size (depth) of the FIFOs implementing the channels connecting actors is important

because an underestimation of these sizes may lead to runtime failure by overflow. When generating
VHDL code, overestimations also lead to a waste of hardware resources.

13A complementary option, ai max cycles, serves to adjust the limit used to detect DDF actors.

115

As described in Sec. 10.9, this prediction is typically carried out using runtime monitoring of the
code generated by the SystemC backend. This approach may be the only applicable for some programs
involving actors with DDF behaviors. It is intuitively clear that the size of the required FIFOs depends
on the consumption and production rates of connected actors. If these rates depend on the values
carried by tokens, so do the size of the FIFOs.

But not all programs involve DDF actors. For programs involving only SDF actors – and, to a
certain extent14, CSDF actors –, it is possible to accurately predict these sizes on the basis of a purely
static analysis.

This is described, for SDF graphs, in the next section.

SDF graphs

It is well known (see for example [9]) that for “pure” acyclic SDF graphs – i.e. graphs for which all actors
can be classified as SDF and exhibiting to feedback loops – the size of the buffers implementing channels
can be statically computed. The basic technique relies on solving the so-called balance equations, relating
production and consumption rates on extremities of all edges.

In the case of CAPH programs, for which all production and consumption rates are equal to 1,
these sizes can be computed in a more straigthforward way using the algorithm described below. The
algorithm basically works by propagating phases along all edges of the dataflow graph, where the phase
(φ) measures the propagation time (counted in execution cycles) of the input token(s). For a box to
fire, each input edge must have the same phase. Otherwise, a FIFO must be inserted on the “late”
edge(s). The required FIFO capacity (cap) can be computed from the difference of phases. Moreover,
the phase of the output edge(s) can be simply computed by adding a constant (representing the actor
delay, in execution cycles) to the latest input phase.

Implementation

A prototype implementation of the mechanism described in the previous section is available in version
2.8.4 of the compiler. This implementation generates an annotation file similar to that produced by the
SystemC backend used with the sc_dump_fifo_stats (as described in Sec. 10.9 of the manual). This
file can passed directly as argument to the vhdl_annot_file option when invoking the VHDL backend
in order to specify the size of each hardware FIFO.

The mechanism is invoked by passing the -dump_sdf_fifo_sizes option to the compiler. Of course,
a necessary condition is that all boxes can be classified as SDF15.

As an example consider the program given in Listing 8.2.7. The actual computations performed by
actors is irrelevant here, only their SDF signature is.� �
actor f oo

in (i : s igned<8>)
out (o : s igned<8>)

rules
| i : x −> o : x
;

actor bar
in (i 1 : s igned<8>, i 2 : s igned<8>)
out (o : s igned<8>)

rules

14Which remains to be investigated. . .
15Classification is performed as a preliminary step without the need to explicitely pass the -infer mocs option.

116

Algorithm 1 Compute FIFO sizes of DFG G

Require: Each node n of G has been classified as SDF
Ensure: Each edge e of G is assigned a phase φ and a required FIFO capacity cap

1: for each n ∈ SourceNodes(G) do
2: for each e ∈ v.outps do
3: e.φ← 0
4: end for
5: end for
6: N ← TopologicalSort(G)
7: while Nnot empty do
8: n← ExtractF irst(N)
9: φm ← maxe∈n.ins(e.φ)

10: for each e ∈ n.ins do
11: if e.φ < φm then
12: e.cap← 1 + φm − e.φ
13: else
14: e.cap← 1
15: end if
16: end for
17: for each e ∈ n.outs do
18: e.φ← φm + n.delay
19: end for
20: end while

| (i 1 : x1 , i 2 : x2)−> o : x1+x2
;

actor z ib
in (i : s igned<8>)
out (o1 : s igned<8>, o2 : s igned<8>)

rules
| i : x−> (o1 : x , o2 : x)
;

stream inp : s igned<8> from ” sample . txt ” ;
stream outp : s igned<8> to ” r e s u l t . txt ” ;

net (x2 , x3) = z ib inp ;
net outp = bar (foo inp , bar (foo x2 , foo (foo x3))) ;� �

Computing the FIFO sizes is performed by invoking the compiler as follows (assuming that the
program is contained in file main.cph, in directory test) :� �
caphc −dot −dump sdf f i fo s izes main . cph� �
This gives the following output� �
This i s the Caph compiler , v e r s i on 2 . 8 . 4
. . .
Wrote f i l e . / test mocs . dat
Wrote f i l e . / t e s t s d f f i f o s i z e s . dat
Wrote f i l e . / test . dot� �

117

The contents of the generated test_sdf_fifo_sizes.dat file is given in Fig. 8.6. These results
can also visualized graphically by invoking the compiler with the -dot as -dot_wire_annot options,
producing the graph given in Fig. 8.7. In this graph, each edge has been annotated with two integers
p/s, where p is the phase and s the required FIFO capacity.

w1 fifo_size = 1

w9 fifo_size = 4

w8 fifo_size = 1

w7 fifo_size = 1

w6 fifo_size = 2

w5 fifo_size = 1

w4 fifo_size = 1

w3 fifo_size = 1

w2 fifo_size = 1

w10 fifo_size = 1

Figure 8.6: Result of static computation of FIFO sizes for the program of Fig. 8.2.7

outpinp

zib w1:1/1

foo
 w7:1/1

foo
 w4:2/1

foo w2:2/1

bar w10:6/1
 w9:2/4

bar w8:5/1

 w6:3/2

foo w5:4/1 w3:3/1

Figure 8.7: The dataflow graph generated by the CAPH compiler from the program in Listing. 8.2.7,
with edges annotated with the infered phase and FIFO size information

118

Chapter 9

Intermediate representation

This chapter briefly describes the target-independant intermediate representation (IR) used as an input
for the back-ends.

The intermediate representation (IR) is basically a process network in which each process is repre-
sented as a finite-state machine (FSM) and channels as unbounded FIFOs.

Generation of this intermediate representation involves two steps : first generating a structural
representation of the actor network and then generating a behavioral description of each actor involved
in the network.

9.1 Network generation

Generating the structural representation of the actor network consists in instantiating each actor –
viewed as a black box at this level – and “wiring” the resulting instances according to the dependencies
expressed by the functional definitions. This process is fully formalized by the static semantics described
in Chap. 6. The resulting network is set of boxes interconnected by wires. Boxes result from the
instanciation of actors and wires from the data dependencies expressed in the definition section.

9.2 Behavioral description

Generating the behavioral description of an instantiated actor (box) consists in turning the set of
pattern-matching rules of the corresponding actor into a finite state machine with operations (FSMD
level). This process is depicted in Fig. 9.1.

At each rule ri, consisting of a list of patterns patsi and a list of expressions expsi, we associate a
set of conditions CJriK and a set of actions AJriK. The set CJriK denotes the firing conditions for rule
ri, i.e. the conditions on the involved inputs, outputs and local variables that must be verified for the
corresponding rule to be selected. The set AJriK denotes the firing actions for rule ri, i.e. the read
operations and write operations that must be performed on the involved inputs, outputs and variables
when the corresponding rule is selected.

There are four possible firing conditions:

• Availr(i), meaning that input i is ready for reading (the connected FIFO is not empty),

• Matchi(i, pat) (resp.Matchv(v, pat)), meaning that input i (resp. variable v) matches pattern
pat,

• Availw(o), meaning that output o is ready for writing (the connected FIFO is not full),

119

actor b
 in (...)
 out (...)
rules
 pats_1 -> exps_1
| ...
| pats_i -> exps_i
| ...
| pats_n -> exps_n
;

Rdy

.
.
.

C[1]/A[1]

C[n]/A[n]

Figure 9.1: Translation of a box into a FSM

• Cond(exp), meaning that guard expression exp (involving inputs and/or variables) is true

and four possible firing actions:

• Read(i), meaning ”read input i (pop the corresponding from the connected FIFO)”, ignoring the
read value,

• Bindi(i, pat), meaning ”read input i (pop the corresponding from the connected FIFO) and match
the corresponding value against pattern pat”, binding the variable(s) occurring in the pattern to
the corresponding value(s),

• Bindv(v, pat), meaning ”match variable v against pattern pat”,

• Writeo(o, exp, ρ) (resp. Writev(v, exp, ρ)), meaning ”evaluate expression exp, using environment
ρ and write the resulting value on output o (pushing the value on the connected FIFO) or in
variable v.

Fig 9.3 summarizes the rules for computing the sets CJrK and AJrK from the patterns and expressions
composing a rule. In these rules denotes the ”empty” pattern (resp. expression), const a constant
pattern and var a variable pattern, vars(pat) is a function returning the name of all variables bound
by a pattern and ρ0 is the “default” environment for evaluating a RHS expression, containing of the
values of the global and local variables.

To illustrate the generation of the intermediate representation, let’s take again the suml actor
introduced in Sec. 2.4.4. The code of this actor is given again below :� �
actor suml

in (i : s igned<16> dc)
out (o : s igned<16>)

120

var s t : {S0 , S1} = S0
var sum : i n t
rules
| (s t : S0 , i : ’<) −> (sum : 0 , s t : S1)
| (s t : S1 , i : ’>) −> (o : sum , s t : S0)
| (s t : S1 , i : ’ v) −> (sum : sum+v) ;� �
The corresponding intermediate representation is given in Fig. 9.2. The small number appearing

beside each transition is the index of the corresponding rule.

Rdy

 Match(st,S1), Avail(i), Match(i,Data v)

Bind(i,Data v), Write(sum,sum+v)
3

Match(st,S0),
Avail(i),

Match(i,SoS)

Read(i),
Write(st,S1),
Write(sum,0)

1

Match(st,S1),
Avail(i),

Match(i,EoS),
Avail(o)

Read(i),
Write(st,S0),
Write(o,sum)

2

Figure 9.2: Intermediaire representation for the suml actor

121

CrJqpat1, . . . , qpatmK = C CgJgexp1, . . . , gexppK = C ′′ CwJqexp1, . . . , qexpnK = C ′

CJqpat1, . . . , qpatm when gexp1, . . . , gexpp → qexp1, . . . , qexpnK = C ∪ C ′′ ∪ C ′

ArJqpat1, . . . , qpatmK = C, ρ ρ0 ⊕ ρ ` AwJqexp1, . . . , qexpnK = A′

AJqpat1, . . . , qpatm → qexp1, . . . , qexpnK = A ∪A′

∀i. 1 ≤ i ≤ m, ArJqpatiK = Ai, ρi

ArJqpat1, . . . , qpatmK =
⋃m

i=1Ai,

n⊕
i=1

ρi

∀i. 1 ≤ i ≤ n, ρ ` AwJqexpiK = Ai

ρ ` AwJqexp1, . . . , qexpnK =
⋃n

i=1Ai

CrJqpat1, . . . , qpatmK =
⋃m

j=1 C
′
rJqpatjK

CgJgexp1, . . . , gexppK =
⋃p

j=1 C
′′
r JgexpjK

CwJqexp1, . . . , qexpnK =
⋃n

j=1 C
′
wJqexpjK

C ′rJIn, i, K = ∅
C ′rJIn, i, patK = {Availr(i),Matchi(i, pat)}
C ′rJVar, v, K = ∅

C ′rJVar, v, patK = {Matchv(v, pat)}

C ′wJOut, o, K = ∅
C ′wJOut, o, expK = {Availw(o)}
C ′wJVar, v, expK = ∅

C ′′r JexpK = {Cond(exp)}

A′rJIn, i, K = ∅, ∅
A′rJIn, i, constK = {Read(i)}, ∅
A′rJIn, i, patK = {Bindi(i, pat)}, vars(pat)
A′rJVar, v, K = ∅, ∅

A′rJVar, v, constK = ∅, ∅
A′rJVar, v, var vK = ∅, ∅
A′rJVar, v, patK = {Bindv(v, pat)}, vars(pat)

ρ ` A′wJOut, o, K = ∅
ρ ` A′wJOut, o, expK = {Writeo(o, exp, ρ)}
ρ ` A′wJVar, v, K = ∅

ρ ` A′wJVar, v, var vK = ∅
ρ ` A′wJVar, v, expK = {Writev(v, exp, ρ)}

Figure 9.3: Rules for computing the C and A sets for actor rules

122

Chapter 10

Using the caph compiler

The CAPH compiler can be used to

• obtain graphical (.dot) representations of program,

• simulate programs or

• generate SystemC or VHDL code.

This chapter describes how to invoke compiler on the command-line (on Unix systems). A separate
document describes the graphical IDE (running under MacOS and Windows platforms).

The compiler is invoked with a command like :

caphc [options] file

where file is the name of the file containing the source code (by convention, this file should be
suffixed .cph).

The complete set of options is described in App. 13.
The set of generated files depends on the selected target. The output file caph.output contains the

list of the generated file.

10.1 Generating a graphical representation of the program

Example :

caphc -dot foo.cph

The previous command generates a graphical representation of the program contained in file foo.cph
and writes it in file foo.dot. This representation can be viewed with the Graphviz suite of tools1.

10.2 Running the simulator

Example :

caphc -sim -stop_after 200 foo.cph

The previous command runs the program contained in file foo.cph for 200 execution cycles.

1Available freely from http://www.graphviz.org.

123

10.3 Generating SystemC code

Example :

caphc -systemc foo.cph

The previous command generates the SystemC code corresponding the program contained in file
foo.cph. The following files are written :

• a file foo expanded.dot, containing a modified version of the program graphical description, in
which explicit flow-splitting boxes have been inserted,

• a file foo net.cpp, containing the network description,

• a pair of files x act.h, x act.cpp for each instance2 appearing in the program, containing
respectively the interface and the implementation of the actor,

• if some global constants and/or functions are defined, a pair of files foo globals.h, foo globals.cpp,
containing the C++ prototypes (resp. definitions) of the corresponding values. These files also
contains the interface (resp. implementation) of the user defined variant types when such types
have been declared in the program (see Sec. cha:variants-impl),

• if needed, a file foo_splitters.h containing the interface and implementation of actors for per-
forming 1→ n flow replication.

The produced files can then compiled using the standard SystemC toolchain. When compiling (resp.
linking) the CAPH-specific headers (resp. library) must be available3. The easiest way to compile the
generated code is to use the -make option of the compiler and to rely on the predefined skeleton makefile
$(CAPH)/lib/etc/Makefile.core (see Sec. 10.11.

10.4 Generating VHDL code

Example :

caphc -vhdl foo.cph

The previous command generates the VHDL code corresponding the program contained in file
foo.cph. The following files are written :

• a file foo_expanded.dot, containing a modified version of the program graphical description, in
which FIFO buffers and explicit flow-splitting boxes have been inserted,

• a file foo_net.vhd, containing the (structural) network description,

• a file xxx_act.vhd for each instance of actor xxx appearing in the program, containing the inter-
face and implementation of the actor,

• if some global constants and/or functions are defined, a pair of files foo_globals.vhd, containing
the VHDL description of the corresponding values,

2If the actor is monomorphic, there will a single instance; otherwise there will be as many instances as distinct type
and size specialisations of this actor. Each instance goes in a distinct pair of files. A name mangling mechanism is used
to distinguish between files.

3These headers and library are located in $CAPH/lib/systemc where $CAPH points to the installation directory of the
CAPH toolset.

124

• if the program declares some variant types, a file foo_types.vhd containing the description of
the VHDL package implementing the corresponding types4,

• if needed, a file foo_splitters.vhd containing the interface and implementation of actors for
performing 1→ n flow replication,

• a file foo_tb.vhd, containing a test bench for simulating the resulting design.

The produced files can then compiled, simulated and synthetized using a standard VHDL toolchain5.
When compiling the CAPH-specific dc library, containing the dcflow package, must be available6. As
with the SystemC backend, the easiest way to compile the generated code is to use the -make option
of the compiler and to rely on the predefined skeleton makefile $(CAPH)/lib/etc/Makefile.core (see
Sec. 10.11.

10.5 File I/O

When performing simulations of either using the reference interpreter or the generated SystemC code
input data streams and output streams are read from (resp. written to) text files.

For example, if the program contains the following lines :� �
stream inp : s igned<10> dc from ” sample . txt ” ;
stream r e s : unsigned<1> dc to ” r e s u l t . txt ” ;� �

then the input stream will be read from file sample.txt and the output stream written to file
result.txt7.

For streams containing values with a scalar type (see Sec. 2.2.1), these files will simply contain the
sequence of input (resp.output) tokens, separated by white space(s). For example, here’s the contents
of a file containing eight tokens of type unsigned<8> :

12 34 67 6 99 0 0 55

For streams containing values with an array type (see Sec. 2.2.2), each array will be denoted as a
comma-separated list of values and enclosed between braces. For example, a file describing a stream of
four arrays of size 4 is :

{ 1,2,3,4 } { 10, 20, 30, 40 } { 100, 200, 300, 400 } { 1000, 2000, 3000, 4000 }

For streams containing values with a variant type (see Sec. 2.2.2), each token will denote, textually,
either a nullary constructor or a n-ary constructor, followed by the associated value(s).

For example, a file describing a stream of values with type unsigned<8> option (as introduced in
Sec. 2.4.1), is :

Absent Present 2 Present 4 Absent Absent Present 8

and a file describing a stream of values with type (signed<8>,bool) pair is :

Pair 1 true Pair 8 false Pair 0 100

4In case of polymorphic variants, there’s one package per distinct monomorphic instanciation of the declared type.
5We use the Quartus II toolchain from Altera.
6This library, and the corresponding package(s) and library are located in $CAPH/lib/vhdl where $CAPH points to the

installation directory of the CAPH toolset.
7In the directory from which the CAPH compiler is invoked. Absolute and relative pathnames are also possible.

125

In particular, input or input files representing streams structured with the t dc type can be denoted
using the Data, EoS and SoS constructors. Listing 10.1, for example, gives the contents of a file describing
a 3× 3 image.

Listing 10.1: A text input file describing a 3x3 image� �
SoS SoS Data 10 Data 30 Data 55 EoS SoS Data 53 Data 60 Data 12 EoS SoS Data 56 Data 23

Data 11 EoS EoS� �
Because denoting images this way quickly becomes very verbose, the interpreter and the SystemC

generated code also accept (resp. produce) input (resp. output) files written with an abbreviated
syntax, in which the SoS, EoS and Data v token are respectively written as <, > and v. For this, the
simulator and the SystemC backend must be invoked with the -abbrev_dc_ctors option. With this
option, the file listed in listing. 10.1 can be replaced by that of listing 10.2.

Listing 10.2: A text input file describing a 3x3 image (abbreviated syntax)� �
< < 10 30 55 > < 53 60 12 > < 56 23 11 > >� �
10.5.1 Port I/O

The previous sections dealt with stream-based I/O. A similar mechanism is provided to simulate pro-
grams using port-based I/O.

For input ports, if a file is specified this file is expected to contain a list of events, where a
event consists in a date and value. The specified port will then hold its initial value until the current
simulation time reaches the date(s) specified in the file; at this time the value of the port is updated
with the specified value and this continues for each event of the input file (or the simulation stops).

Because the notion of “simulation” time depends on the nature of the simulation (using the inter-
preter, the code generated by the SystemC backend or the code generated by the VHDL backend), the
date of each event in the event file is actually specified using three distinct values, respectively repre-
senting a simulation cycle number (for the interpreter), a sc time value, in ns (for the SystemC code)
and a simulated clock time, also in ns (for the VHDL code). Listing 10.3 is an example of event file,
containing two events. The first event is scheduled at cycle 60 (when using the reference interpreter) and
at t = 200ns when using the SystemC and VHDL backends, and the second at cycle 60 and t = 600ns8.

Listing 10.3: A sample event file, to be attached to a input port declaration� �
sim cycle sc time vhdl t ime va lue

40 200 200 10
60 600 600 20� �

For output ports, the file specified in the declaration will simply contain, at the end of the sim-
ulation, a list of events which occured on the corresponding port, where an event is here defined as a
pair of a value and the date (simulation cycle/time) when this value was written on the port.

10.5.2 File globbing

A minimal support for file globbing is offered in the current version. For example, specifying, in the
CAPH source file� �
stream inp : s igned<10> dc from ”im [1 −3] .pgm” ;� �

8Unfortunately, there’s no simple relation between the first number and the two others; these two others should be
the same, provided the period of the clock used in the respective testbenches are equal.

126

will cause input streams to be read successively from files im1.pgm, im2.tx and im2.pgm. There
can be only one globing pattern in a file specification and the only accepted pattern9 is a range pattern,
i.e. a pattern having form [n1-n2], where n1 and n2 are integers10.

Patterns can also be used in output file specifications but only in conjonction with the -split_output_frames
compiler option. In this case, when the output stream is composed of tokens having type t dc and
contains a sequence of images, the interpreter (resp. the SystemC and VHDL testbench) will write each
successive image in a separate file, the name of these files being given by expanding the file pattern.
For example, writing� �
stream r e s : unsigned<1> dc to ” r e s u l t s / r e s u l t [1 −3] .pgm” ;� �

in the CAPH source file will cause the images produced on output res to be written in files
results/result1.pgm, results/result2.pgm and results/result3.pgm. The behavior is undefined
if the output stream is not of type t dc, does not encode an image or if the number of successive images
does not match the number of files after pattern expansion.

10.5.3 File IO when using the VHDL backend

Because of the limitations of file IO library in VHDL, direct reading and writting of structured text
files is not supported. When running simulations using the VHDL testbench generated by the CAPH
compiler, text files must be converted to and from a special custom format. Files having this format
have the .bin extension11. Two utility programs, txt2bin and bin2txt are provided in the CAPH
distribution for converting between .txt and .bin files12.

For example, the command to convert the file sample1.txt, containing the representation of an
stream of type signed<16>, is13 :� �
tx tb in −out sample1 . bin s i n t 16 sample1 . txt� �

and the command to convert the file sample2.txt, containing the representation of structured
stream of type unsigned<8> dc, is :� �
tx tb in −dc −abbrev −out sample2 . bin u int 8 sample2 . 2 txt� �

The txt2bin and bin2txt also supports the generation (resp. interpretation) of event files attached
to input (resp. output) ports, using the -eventf option. Note that only ports carrying scalar values
can be programmed this way.

A complete description of the txt2bin and bin2txt commands can be found in the appendices.

Note. Since version 2.8.1, and when using the caphmake utility described in Sec. 10.11, calls to
txt2bin and bin2txt utilities are automatically inserted in the generated Makefile.vhdl file.

9In the current version.
10In particular, wildcard patterns * and ?, accepted in previous versions of the compiler, are no longer supported

because they cannot be used for specifying output filesets.
11These files are actually text files containing a sequence of words, one word per line, where each word is the ASCII

representation of a binary word.
12These programs are written in C and have to be compiled on the target platform.
13Provided the corresponding command is in the current execution path.

127

10.5.4 Reading and writting image files

The CAPH distribution also includes four utility programs for converting image files, in the PGM
format, to and from .txt and .bin files. This makes it possible to process images and view the results
using external image viewers14.

For example, if a CAPH source program, foo.cph, contains the following lines� �
stream inp : unsigned<8> dc from ”im1 . txt ” ;
stream r e s : unsigned<8> dc to ”im2 . txt ” ;� �

then the complete list of commands for using it to process, using the reference interpreter, an image
stored in file im1.pgm, producing an image in file im2.pgm will be� �
pgm2txt −abbrev im1 . pgm im1 . txt
caphc −sim −abbrev dc ctors foo . cph
txt2pgm −abbrev 256 im2 . txt im2 . pgm� �

In this example, using the -abbrev option for both programs is not mandatory; this simply reduces
the size of the generated text files. The first non optional argument to the txt2pgm command (256 in
this case) gives the maximum pixel value of the corresponding image.

A pair of similar programs is provided to convert .pgm files to and from .bin for running VHDL
simulations.

A complete description of the txt2pgm, pgm2txt, bin2pgm and pgm2bin commands can be found in
the appendices.

Note. Since version 2.8.1, and when using the caphmake utility described in Sec. 10.11, calls to
txt2pgm, pgm2txt, bin2pgm and pgm2bin utilities are automatically inserted in the generated target
specific Makefiles.

10.5.5 Blanking

By default, when reading values from a file, the read tokens are put in the input stream at a fixed
period. When using the reference interpreter, one token is injected at each execution cycle15. When
running the code generated by the SystemC or VHDL backend, one token is injected every N clock
cycle(s), where N is set to 1 by default and can be adjusted using the -sc_istream_period (resp.
-vhdl_istream_period).

But in certain situations, such a fixed input rate does not model accurately enough the behavior
of the application on the hardware target platform. When processing streams coming from a digital
camera, in particular, a certain number of clock cycles without pixels are frequently inserted between
the end of a line and the start of the next line and between the end of a frame (image) and the next
one. This is usually called blanking (”horizontal” and ”vertical” respectively). Ideally, the presence or
the absence of blank clock cycles should be transparent. But some dataflow actors may actually rely on
the presence of these cycles to operate correctly16. For these actors the behavior observed at simulation
leval (either SystemC or VHDL) matches the behavior observed after synthesis on the target platform
only if blanking cycles are generated by the testbench.

When using the SystemC backend, insertion of such blanking cycles in the testbench code can be
requested by invoking the compiler with the -sc_istream_hblank and -sc_istream_vblank options.

14Such as xv or xloadimage under linux.
15The notion of execution cycle is defined in Sec. 7.3.
16This is the case, in particular of certain actors using external FIFOs to perform pixel or line delays, for which the

blank cycles are used to flush the FIFOs, such as the cconvXXX actors defined in the convol.cph standard library.

128

For example, the command for generating the code processing a sequence of images, inserting 8 blank
cycles between lines of 32 blank cycles between images will be :� �
caphc −systemc −sc stop time 2000 −sc istream hblank 8 −sc istream vblank

32 −spl i t output frames a p p l i . cph� �
When using the VHDL backend, blanking is carried out by

• inserting special tokens in the .bin file generated by the txt2bin utility (using the -hblank and
-vblank options of this command),

• passing the -vhdl_istream_blanking options when invoking the CAPH compiler.

For example, to process a sequence of images stored in files im1.txt to im16.txt, inserting 8 blank
cycles between lines of 32 blank cycles between images, the following commands can be issued :� �
txt2b in −dc −abbrev −hblank 8 −vblank 32 −out im . bin u int 8 im [1 −16] . txt
caphc −vhdl −sc stop time 8000 −vhdl istream blanking a pp l i . cph
b in2txt −dc −abbrev −spl i t output frames −out r e s u l t . txt u int 8 r e s u l t . bin� �

Both in the SystemC and VHDL case, blanking only makes sense when dealing with input streams
representing images encoded using the t dc type. The results is otherwise undefined.

10.6 File inclusion

The compiler implements a simple mechanism for file inclusion. When compiling a CAPH source file,
the directive� �
#inc lude ” f i l e . cph”� �

will cause the contents of the file file.cph to be included textually and compiled. Filenames can
be relative or absolute. In the former case, they are searched relatively to the working directory (the
directory from which the CAPH compiler is invoked). The search path can be extended with the -I

option. A typical usage is pass the -I $(CAPHLIB) option to the compiler, where CAPHLIB is the location
of the standard libraries.

Several #include directives can be issued in the same file and they can also be nested (a file included
this way can itself contains an #include directive).

The mechanism works exactly like the #include directive for C compilers17. It therefore offers no
protection against symbol redefinition.

10.7 Passing command-line options to programs

There’s a rudimentary macro mechanism for passing command-line arguments to programs. As for file
inclusion, this mechanism imitates the one used for C programs. The corresponding option is -D. This
option has two forms :

• -D name=value,

• -D name

17Technically, this is achieved by just switching the lexing buffer.

129

The first form defines a symbol name and binds it to the value value, where value can be either

• a string (without double quotes) (ex: sample.txt),

• a integer (ex: 12),

• an explicitely unsigned integer (ex: 23U),

• an explicitely signed integer (ex: 23S).

Any occurrence of ”%name” in the program source will then be textually substituted by the attached
value.

The second form simply defines a symbol name without assigning it a value. This form is particularly
used in conjunction with the conditional compilation mechanism described in Sec. 10.8.

For example, suppose we want to adjust the input file connected to the input stream, without having
to edit the program itself. We would write the corresponding line of the program

stream inp:unsigned from %ifile;

and invoke the simulator, for ex., as :

caphc -D ifile=input_file_name.txt ... program.cph

Like C macros, this mechanism is handled using textual substitution at the lexical level and is
therefore fragile.

10.8 Conditional compilation

The compiler supports a minimal form of conditional compilation using #ifdef, #else and #endif

directives. As for the #include directive, these directives works exactly like with a C pre-processor.
For example, in the following program� �

1 #i f d e f SYM1
2 . . .
3 #e l s e
4 . . .
5 #e n d i f� �

the code section between the lines 1-3 will be included only if the symbol SYM1 is defined18. Otherwise,
the code section between lines 3 and 5 will be included. The #else section can be omitted. In this
case, nothing in included if the corresponding symbol is not defined.

Symbols can be defined when invoking the compiler with the -D option (see Sec. 10.7).
In the current version, nesting of conditionnal compilation directives is not allowed.

10.9 Adjusting FIFO size

When running the simulator, the size of the FIFO channels connecting the actors may be adjusted using
the -chan_cap option. The default value is 64. The option -warn_channels can be used to detect
situations in which some channels get full (and therefore block program execution).

18Note that when using symbols with #ifdef directive, the symbol name is not prefixed with ”%”.

130

The default size for the FIFOs implementing the channels in the SystemC code is also 64. This
value can be adjusted with -sc_fifo_capacity option. The -sc_dump_fifo_stats option can be
used to obtain statistics about FIFO occupation during program execution. This option will generate
a file named fifo_stats.dat which summarizes the maximum occupation of each FIFO during the
program execution19. More accurate information can be obtained with option -sc_dump_fifos, which
dumps (on stdout) the contents of each FIFO whenever it changes at runtime. An intermediate option
is -sc_trace_fifos, which generates a .vcd file tracing the occupation of each FIFO and which can be
viewed after run using a VCD viewer such as gtkwave.

When generating the VHDL code, the option -vhdl_default_fifo_capacity can be used to set
the default size for the FIFOs. If not used, the value is 4. In some cases, it may be necessary to adjust
this size individually for each FIFO. This can be done with -vhdl_annot_file option. This option
accepts a file as argument. This file is supposed to contain a set of back annotations for customizing
the final VHDL code. Currently, only one kind of annotation is available20 :

• <fid> fifo_size=<n> : this annotation will set the size of the FIFO named <fid> in the VHDL
RTL description to n + m, where m is an offset value. The default offset value is 2. It can be
changed with the -vhdl_fifo_offset option.

This annotation mechanism allows the file fifo_stats.dat generated by running the SystemC gen-
erated code with the -sc_dump_fifo_stats to be passed directly as an argument to the -vhdl_annot_file
option.

When targeting a FPGA using the VHDL backend, there are two possibilities for implementing
FIFOs :

• using the registers included in the standard logic elements (LEs),

• using embedded RAM blocks.

Up to version 2.8.5, the CAPH standard VHDL library contained two FIFO models : one for generating
LE-based implementations and the other for RAM-based implementations. This makes sense since using
LE-based implementations for “big” FIFOs can can consume a larg number of LEs21. A pragmatical
problem is that writing a platform-independant model for a RAM-based FIFO is actually very difficult22

because it ultimately relies on the actual target hardware and on synthetizer-specific settings. We view
it as essential that CAPH essentially remains a platform-agnostic tool, i.e. that it does not rely on
hardware and/or vendor specific facilities. Since version 2.9.0, the CAPH VHDL library therefore
only contains one FIFO model, generating, by default, LE-based FIFO implementations. For a given
platform, it is possible to supply an alternate model – generating RAM-based implementations in
particular – and to decide when using this model by using two compiler options23 :

• the -vhdl_big_fifo_model option is used to specify the VHDL model for “big” FIFO (which
have to be implemented using RAM-blocks typically),

• the -vhdl_fifo_model_threshold option is used to decide when to switch from the default
(“small”) model to the alternate (“big”) one; the default threshold value is 32.

19The name of this file can be changed with the -sc fifo stats file option.
20The set of annotations may be augmented in future versions of the CAPH compiler.
21A 256× 10 bits FIFO, for example, required for storing a single line of a 256× 256 image, will consume at least 2560

LEs !
22The fifo big.vhd model provided in the CAPH library up to v2.8.5 did generate RAM-based implementations, but

only on Altera FPGAs using the Quartus synthetizer.
23These options were already present in pre-2.9.0 versions; they are just used slightly differently now.

131

For example, suppose we have written an optimized RAM-based implementation of a FIFO in file
my_ram_fifo.vhd. If we compile the program foo.cph with

caphc -vhdl -vdhl_big_fifo_model my_ram_fifo -vhdl_fifo_model_threshold 128 foo.cph

then, in the generated VHDL code, all FIFOs with a size ≤ 128 will be instanciated from the default
fifo component provided in the CAPH standard library and all FIFOs with a size > 128 from the
supplied my_ram_fifo component. For this to work, of course :

• the file my_ram_fifo.vhd must be available when compiling / synthetizing the generated VHDL
code (either by supplying the appropriate options to the VHDL tools or by copying this file to
the working directory),

• the interface and the behavior of the supplied FIFO must be conformant to the protocol used by
CAPH actors to communicate to FIFOs; this protocol is described in Appendix cha:fifos.

Note. A third option, -vhdl_small_fifo_model, also makes it possible to change the VHDL
model used for implementing “small” FIFOs (those with a depth smaller under the default or specified
threshold). If not used, and as specified above, the model defined in lib/vhdl/fifo.vhd is used.

10.10 Dumping box FSMs

The behavior of an actor can often be described as a finite state machine (FSM), with a dedicated
local variable playing the role of the state. When inkoked with the -dump_fsms option, the caphc

compiler generates a graphical representation of all boxes with such an FSM behavior. The name of the
generated file is <aaa>_act_b<nnn>.dot, where <aaa> is the name of the instanciated actor and <nnn>

the box identifier24. Boxes associated with a FSM behavior are those having a least one local variable
with a enumerated type or an ranged integer type. When several such variables are present the first
declared one is considered to be the state variable.

Examples of generated FSMs are given in figures 10.1, 10.2 and 10.3. The two former examples have
already been described in Sec. 2.4.4. The latter has been introduced in chapter 8. This last example
shows how the actual value of a box parameter can be used to instanciate the FSM.

10.11 The caphmake utility

This utility, introduced in version 2.8.1, greatly simplifies the usage of the compiler by reducing the
configuration of a CAPH project to the strict minimum25.

Generating code and running simulations using the CAPH compiler now proceeds as follows :

1. generate a top-level Makefile by invoking caphmake,

2. generate backend specific Makefiles by typing make makefiles,

3. generate code and/or run simulations by invoking the ad-hoc rule; the most useful rules are26 :

• make dot to generate the .dot representation of the program (make dot.show to display it),

• make sim.run to run the simulation using the interpreter (make sim.show to display results),

24The box identifier can be retrieved with the -dump senv option or by inspecting the .dot file representation of the
program.

25It can be viewed as the analogue of the qmake utility in Qt distributions.
26See the generated Makefiles for a complete list of rules.

132

� �
actor switch

in (i : $t)
out (o1 : $t , o2 : $t)

var s t : {Left , Right} = Lef t
rules
| (s t : Left , i : x) −> (o1 : x , s t : Right)
| (s t : Right , i : x) −> (o2 : x , s t : Le f t)
;

stream i : s igned<8> from ” sample . txt ” ;
stream o1 : s igned<8> to ” r e s u l t 1 . txt ” ;
stream o2 : s igned<8> to ” r e s u l t 2 . txt ” ;

net (o1 , o2) = switch i ;� �

st=Left

st=Right

i:x
o1:x

i:x
o2:x

Program FSM of the switch actor

Figure 10.1: Example of FSM generation

• make systemc.code to generate the SystemC code,

• make systemc.run to generate the SystemC code and run the corresponding simulation
(make systemc.show to display results),

• make vhdl.code to generate the VHDL code,

• make vhdl.run to generate the VHDL code and run the corresponding simulation (make vhdl.show

to display results).

The description of the caphmake utility is provided in the appendices.

Application-specific customization is essentially done by providing a file named <app>.proj, where
<app> is the name of the toplevel CAPH source file (without the .cph suffix),

The .proj file – which must be placed in the same directory than the compiled program – essentially
contains the values of the options to be passed to the compiler for each possible target27 (.dot gener-
ation, interpreter-based simulation, SystemC backend or VHDL backend). As an example, listing 10.4
gives a .proj file which can be used for the testing the edge extraction application described in chapter
3 of the CAPH tutorial (”Caph Primer”).

Listing 10.4: A possible .proj file for the edge extraction application described in chapter 3 of the
”Caph Primer”� �
GEN OPTS = −D i f i l e =pcb . pgm −D thre sho ld =80
DOT OPTS = $ (GEN OPTS)
SIM OPTS = $ (GEN OPTS) −abbrev dc ctors −dump channel stats
SC OPTS = $ (GEN OPTS) −sc abbrev dc ctors −sc stop when idle 1000 −sc dump fifo stats
VHDL OPTS = $ (GEN OPTS) −vhdl annot f i l e main f i fo s tats . dat
GHDL RUN OPTS = −−stop−time =160000ns� �

27Technically, this file is simply included at the beginning of each of the Makefiles generated from the toplevel Makefile.

133

� �
actor suml

in (a : s igned<8> dc)
out (c : s igned<8>)

var s t : {S0 , S1} = S0
var s : s igned<8>
rules
| (s t : S0 , a : ’<) −> (s t : S1 , s : 0)
| (s t : S1 , a : ’ p) −> (s : s+p)
| (s t : S1 , a : ’>) −> (s t : S0 , c : s)
;

stream i : s igned<8> dc from ” sample .
txt ” ;

stream o : s igned<8> to ” r e s u l t . txt ” ;

net o = suml i ;� �

st=S0

st=S1

a:SoS
a:EoS
c:s

a:Data(p)

Program FSM of the suml actor

Figure 10.2: Example of FSM generation

In some (rare) cases, the default targets produced in the target specific Makefiles when invoking
make makefiles after caphmake may not be adequate. A typical situation is when some extra argu-
ments, which cannot be guessed by compiler from the source code, have to be passed to some utility
programs. In this case, it is possible to override the corresponding rules by writing a file <app>.rules

containing the new definitions28. As an example, listing 10.5 gives the .rules file which has been used
for the testing the second version of the edge extraction application described in chapter 3 of the CAPH
tutorial. Since this version makes use of centered convolution, blanking parameters must be passed to
the passed to the pgm2bin program when generating the .bin input file from the input .pgm image.
This cannot be guessed by the compiler and hence has to be specified in the .rules file29.

Listing 10.5: A possible .rules file for the seconde version of the application described in chapter 3 of
the tutorial� �
pcb . bin : pcb .pgm

$ (PGM2BIN) −hblank 4 −vblank 140 12 $< $@� �

28As for the .proj file, the .rules file must be located in the same directory than the compiled file.
29Technically this file is inserted at the end of the target specific Makefiles, so that overriding can take places. This

explains why the corresponding definitions cannot be given in the .proj file.

134

� �
actor sample (n : i n t)

in (i : $t)
out (o : $t)

var k : { 1 , . . , n} = 1
rules
| i : x when k<n −> k : k+1
| i : x when k=n −> (k : 1 , o : x)
;
. . .
net o = sample 4 i ;� �

k=1

k=2i:x k=3
i:x

k=4

i:x
i:x
o:x

Program FSM of the sample actor

Figure 10.3: Example of FSM generation

135

Chapter 11

The CAPH standard libraries

The CAPH distribution comes with a small set of “libraries” containing definitions of actors and func-
tions which are likely to be frequently used in signal or image processing applications :

• dc.cph contains the definition of the dc type (see Sec. 2.4.1),

• list_ops.cph contains the definitions of actors performing back and forward delays on lists of
values,

• img_ops.cph contains the definitions of actors and wiring functions for manipulating images
(horizontal and vertical delays, neighborhood generation, . . .),

• convol.cph contains the definitions of actors performing convolutions on lists and images,

• stream_ops.cph contains the definitions of actors performing various operations on unstructured
streams.

Most of the actors (resp. functions) are polymorphic and accept parameters making them sufficiently
generic to be used in a large variety of contexts.

To use a library, one simply has to include it in the program, using the #include directive described
in Sec. 10.6. For example, a program using the dc type will start with the following line :� �
#inc lude ”dc . cph”� �

The location of the standard libraries must be specified with the -I option (see Sec. 13).

The contents of the standard libraries is reproduced below.

Listing 11.1: The library dc.cph� �
−− The [dc] type i s used f o r encoding s t ruc tu r ed streams of va lue s .
−−
−− The ”SoS” and ”EoS” cons t ruc to r s r e s p e c t i v e l y encode the ” S ta r t o f S t ruc ture ” and
−− ”End of S t ruc ture ” con t ro l token .
−− The ”Data” cons t ruc tor encodes the data tokens (where the data has type $ t) .
−− For example , a l i s t o f boolean va lue s can be represen ted with the f o l l ow i n g stream
−− o f tokens , o f type [boo l dc] :
−− SoS true f a l s e t rue . . . EoS
−− and a mxn image o f 8− b i t p i x e l s , wi th the f o l l ow i n g stream , o f type [unsigned<8> dc

] :
−− SoS SoS p11 p12 . . . p1n EoS SoS p21 p22 . . . p2n EoS . . .
−− . . . SoS pm1 pm2 . . . pmn EoS EoS
−− where each inner l i s t r ep re s en t s a l i n e (row) o f the image .

136

−− When reading / p r i n t i n g tokens o f type [dc] , the va lue s ”SoS” , ”EoS” and ”Data v”
−− can be r e s p e c t i v e l y abb r ev i a t ed as ” ’<” , ”’>” and ” ’ v” by invok ing the compi ler
−− with the [−abbrev dc ctors] .
−− Note : the numeric encoding o f the cons t ruc tor tag s (see LRM, chap 14) u l t ima t e l y
−− depends on the hardware t e s t b ench ; the va lue s p e c i f i e d here (%1, %2, %3) match
−− the hardware s p e c i f i c a t i o n s o f the DreamCam plat form . Do not change them i f you
−− t a r g e t t h i s p la t form .
−−
−− This f i l e appeared in vers 2 . 6 . 2 . Prev ious ly , the [dc] type was b u i l t i n .

type $t dc =
SoS %1

| EoS %2
| Data %3 of $t
;

−− SMAP higher order ac tor opera t ing on DC s t ruc tu r ed streams
−− smap(f) : < x1 x2 . . . xn > = < f (x1) f (x2) . . . f (xn) >
−− Ex : smap(inc) : < 1 2 3 . . > = < 2 3 4 . . > i f inc (x)=x+1

actor smap (f : $t1−>$t2)
in (i : $t1 dc)

out (o : $t2 dc)
rules
| i : SoS −> o : SoS
| i : Data x −> o : Data (f (x))
| i : EoS −> o : EoS
;

−− SMAP2 higher order ac tor opera t ing on DC s t ruc tu r ed streams
−− Genera l i sa t ion o f SMAP to two input streams
−− smap2(f) : (< x1 x2 . . . xn >, <y1 y2 . . . yn >) = < f (x1 , y1) f (x2 , y2) . . . f (xn , yn) >
−− Ex : smap2(+) : (< 1 2 3 . . >, < 10 20 30 . . . >) = < 11 22 33 . . >

actor smap2 (f : $t11 ∗$t12−>$t2)
in (i 1 : $t11 dc , i 2 : $t12 dc)

out (o : $t2 dc)
rules
| (i 1 : SoS , i 2 : SoS) −> o : SoS
| (i 1 : Data x , i 2 : Data y) −> o : Data (f (x , y))
| (i 1 : EoS , i 2 : EoS) −> o : EoS
;

−− SFOLD higher order ac tor opera t ing on DC s t ruc tu r ed streams
−− s f o l d (f , z) : < x11 x12 . . . x1n > < x21 . . . x2n > . . . = y1 y2 . . .
−− where y i = f (f (f (f (z , x i1) , x i2)) . . . , x in)
−− Ex : s f o l d (+ ,0) : < 1 2 > < 3 4 5 > < 6 7 8 9 > . . . = (1+2) (3+4+5) (6+7+8+9+) . . . =

3 12 30 . .

actor s f o l d (f : $t ∗$t−>$t , z : $t)
in (i : $t dc)

out (o : $t)
var s t : {S0 , S1} = S0
var acc : $t = z
rules
| (s t : S0 , i : SoS) −> (acc : z , s t : S1)
| (s t : S1 , i : EoS) −> (o : acc , s t : S0)
| (s t : S1 , i : Data x) −> acc : f (acc , x)
;

−− SSFOLD higher order ac tor opera t ing on DC s t ruc tu r ed streams
−− s s f o l d (f , z) : < l 1 l 2 . . . ln > = < s f o l d (f , z) (l 1) s f o l d (f , z) (l 2) . . . s f o l d (f , z) (ln)

>

137

−− Ex : s f f o l d (+ ,0) : < < 1 2 3 > < 4 5 6 > < 7 8 9 > > = < (1+2+3) (4+5+6) (7+8+9) > =
< 6 15 24 >

actor s s f o l d (f : $t ∗$t−>$t , z : $t)
in (i : $t dc)

out (o : $t dc)
var s t : {S0 , S1 , S2} = S0
var acc : $t = z
rules
| (s t : S0 , i : SoS) −> (o : SoS , s t : S1)
| (s t : S1 , i : EoS) −> (o : EoS , s t : S0)
| (s t : S1 , i : SoS) −> (acc : z , s t : S2)
| (s t : S2 , i : EoS) −> (o : Data acc , s t : S1)
| (s t : S2 , i : Data x) −> acc : f (acc , x)
;� �

Listing 11.2: The library list ops.cph� �
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Basic opera t ions on l i s t s
−− 2014−11−05, JS
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

#inc lude ”dc . cph” −− the [dc] type

−−
−− DL − One−p i x e l de lay on l i s t s
−− DL(v) :<x1 , x2 , . . . , xn> = <v , x1 , . . . , xn−1>
−−

actor dl (v : $t)
in (a : $t dc)
out (c : $t dc)

var s : {S0 , S1} = S0
var z : $t
rules
| (s : S0 , a : ’<) −> (s : S1 , c : ’< , z : v)
| (s : S1 , a : ’ p) −> (s : S1 , c : ’ z , z : p)
| (s : S1 , a : ’>) −> (s : S0 , c : ’>)
;

−−
−− DkL − k−p i x e l de lay on l i s t s
−− DkL(k , v) :<x1 , x2 , . . . , xn> = <v , . . . , v , x1 , . . . , xn−k>
−− \−−k−−/
−−

actor dkl (k : int , v : $t)
in (a : $t dc)
out (c : $t dc)

var s : {S0 , S1 , S2} = S0
var z : $t array [k] = [v | i = 0 to k−1]
var i : i n t
rules
| (s : S0 , a : ’<) −> (s : S1 , c : ’< , i : 0)
| (s : S1 , a : ’ p) when i<k−1 −> (s : S1 , c : ’ v , i : i +1, z [i] : p)
| (s : S1 , a : ’ p) −> (s : S2 , c : ’ v , i : 0 , z [i] : p)
| (s : S2 , a : ’ p) −> (s : S2 , c : ’ z [i] , i : i f i<k−1 then i+1 e l s e 0 , z [i] : p)
| (s : S2 , a : ’>) −> (s : S0 , c : ’>)
;

−−

138

−− FL − One−p i x e l forward on l i s t s
−− FL(s : v) :<x1 , x2 , . . . , xn> = <x2 , . . . , xn , v>
−−

actor f l (v : $t)
in (a : $t dc)
out (c : $t dc)

var s : {S0 , S1 , S2 , S3} = S0
rules
| (s : S0 , a : ’<) −> (s : S1 , c : ’<)
| (s : S1 , a : ’ p) −> (s : S2)
| (s : S2 , a : ’ p) −> (s : S2 , c : ’ p)
| (s : S2 , a : ’>) −> (s : S3 , c : ’ v)
| (s : S3) −> (s : S0 , c : ’>)
;

−−
−− FkL − k−p i x e l forward on l i s t
−− FkL(k , v) :<x1 , x2 , . . . , xn> = <xk , . . . , xn−k , v , , v>
−− \−−k−−/
−−

actor f k l (k : int , v : $t)
in (a : $t dc)
out (c : $t dc)

var s : {S0 , S1 , S2 , S3} = S0
var i : i n t
rules
| (s : S0 , a : ’<) −> (s : S1 , c : ’< , i : k)
| (s : S1 , a : ’ p , i : 0) −> (s : S2 , c : ’ p)
| (s : S1 , a : ’ p) −> (s : S1 , i : i −1)
| (s : S2 , a : ’>) −> (s : S3 , c : ’ v , i : k−1)
| (s : S2 , a : ’ p) −> (s : S2 , c : ’ p)
| (s : S3 , i : 0) −> (s : S0 , c : ’>)
| (s : S3) −> (s : S3 , c : ’ v , i : i −1)
;� �

Listing 11.3: The library img ops.cph� �
−−
−− Basic opera t ions on images (l i s t s o f l i s t s)
−− 2014−11−05, JS
−−

#inc lude ”dc . cph” −− the [dc] type

−−
−− D1P − 1−p i x e l de lay on images
−− D1P(v) :<L1 ,L2 , . . . , Ln>=<f : L1 , f : L2 , . . . , f : Ln>
−− where : f :<x1 , x2 , . . . , xn> = <v , x1 , . . . , xn−1>
−−

actor d1p (v : $t)
in (a : $t dc)
out (c : $t dc)

var s : {S0 , S1 , S2} = S0
var z : $t
rules
| (s : S0 , a : ’<) −> (s : S1 , c : ’<)
| (s : S1 , a : ’>) −> (s : S0 , c : ’>)
| (s : S1 , a : ’<) −> (s : S2 , c : ’< , z : v)
| (s : S2 , a : ’ p) −> (s : S2 , c : ’ z , z : p)

139

| (s : S2 , a : ’>) −> (s : S1 , c : ’>)
;

−−
−− F1P − One−p i x e l forward on images
−− F1P(v) :<L1 ,L2 , . . . , Ln>=<f : L1 , f : L2 , . . . , f : Ln>
−− where : f :<x1 , x2 , . . . , xn> = <x2 , . . . , xn , v>
−−

actor f1p (v : $t)
in (a : $t dc)
out (c : $t dc)

var s : {S0 , S1 , S2 , S3 , S4} = S0
rules
| (s : S0 , a : ’<) −> (s : S1 , c : ’<)
| (s : S1 , a : ’>) −> (s : S0 , c : ’>)
| (s : S1 , a : ’<) −> (s : S2 , c : ’<)
| (s : S2 , a : ’ p) −> (s : S3)
| (s : S3 , a : ’ p) −> (s : S3 , c : ’ p)
| (s : S3 , a : ’>) −> (s : S4 , c : ’ v)
| (s : S4) −> (s : S1 , c : ’>)
;

−−
−− DkP − k−p i x e l de lay on images
−− DkP(k , v) :<L1 ,L2 , . . . , Ln>=<f : L1 , f : L2 , . . . , f : Ln>
−− where : f :<x1 , x2 , . . . , xn> = <v , . . . , v , x1 , . . . , xn−k>
−− \−−k−−/
−−

actor dkp (k : int , v : $t)
in (a : $t dc)
out (c : $t dc)

var s : {S0 , S1 , S2 , S3} = S0
var i : i n t
var z : $t array [k] = [v | i = 0 to k−1]
rules
| (s : S0 , a : ’<) −> (s : S1 , c : ’<)
| (s : S1 , a : ’>) −> (s : S0 , c : ’>)
| (s : S1 , a : ’<) −> (s : S2 , c : ’< , i : 0)
| (s : S2 , a : ’ p) when i<k−1 −> (s : S2 , c : ’ v , z [i] : p , i : i +1)
| (s : S2 , a : ’ p) −> (s : S3 , c : ’ v , z [i] : p , i : 0)
| (s : S3 , a : ’ p) −> (s : S3 , c : ’ z [i] , z [i] : p , i : i f i<k−1 then i+1 e l s e 0)
| (s : S3 , a : ’>) −> (s : S1 , c : ’>)
;

−−
−−

−− FkP − k−p i x e l forward on images
−− FkP(k , v) :<L1 ,L2 , . . . , Ln>=<f : L1 , f : L2 , . . . , f : Ln>
−− where f :<x1 , x2 , . . . , xn> = <xk , . . . , xn−k , v , , v>
−− \−−k−−/
−− WARNING: un l e s s the input dev i ce i n s e r t some in ter−l i n e de lay between l i n e s o f the

input image ,
−− t h i s ac tor r e qu i r e s a FIFO with min capac i t y [k∗ nb l ignes] on input . .
−− To understand why , j u s t run the s imu la tor in t race mode on a smal l (4 x4) example . .
−−

−−

actor fkp (k : int , v : $t)
in (a : $t dc)

140

out (c : $t dc)
var s : {S0 , S1 , S2 , S3 , S4} = S0
var i : i n t
rules
| (s : S0 , a : ’<) −> (s : S1 , c : ’<)
| (s : S1 , a : ’>) −> (s : S0 , c : ’>)
| (s : S1 , a : ’<) −> (s : S2 , c : ’< , i : k)
| (s : S2 , a : ’ p) when i>0 −> (s : S2 , i : i −1)
| (s : S2 , a : ’ p) −> (s : S3 , c : ’ p)
| (s : S3 , a : ’ p) −> (s : S3 , c : ’ p)
| (s : S3 , a : ’>) −> (s : S4 , c : ’ v , i : k−1)
| (s : S4) when i>0 −> (s : S4 , c : ’ v , i : i −1)
| (s : S4) −> (s : S1 , c : ’>)
;

−−
−− D1Li − 1− l i n e de lay on images (with l o c a l s t o rage)
−− D1Li(v) :<L1 ,L2 , . . . , Ln>=<L0 ,L1 , . . . , Ln−1>
−− where L0=<v , v , . . . , v>
−−

actor d 1 l i (v : $t , maxwidth : i n t)
in (a : $t dc)
out (c : $t dc)

var s : {S0 , S1 , S2 , S3 , S4}=S0
var z : $t array [maxwidth] = [v | i = 0 to maxwidth−1]
var i : i n t
rules
| (s : S0 , a : ’<) −> (s : S1 , c : ’<)
| (s : S1 , a : ’>) −> (s : S0 , c : ’>)
| (s : S1 , a : ’<) −> (s : S2 , c : ’< , i : 0)
| (s : S2 , a : ’>) −> (s : S3 , c : ’>)
| (s : S2 , a : ’ p) −> (s : S2 , c : ’ v , z [i] : p , i : i +1)
| (s : S3 , a : ’>) −> (s : S0 , c : ’>)
| (s : S3 , a : ’<) −> (s : S4 , c : ’< , i : 0)
| (s : S4 , a : ’ p) −> (s : S4 , c : ’ z [i] , z [i] : p , i : i +1)
| (s : S4 , a : ’>) −> (s : S3 , c : ’>)
;

−−
−− D1L − 1− l i n e de lay on images (r e cu r s i v e vers ion , with feedback v ia e x t e rna l FIFO)
−− D1L(v) :<L1 ,L2 , . . . , Ln>=<L0 ,L1 , . . . , Ln−1>
−− where L0=<v , v , . . . , v>
−−

actor d1 l r (v : $t)
in (a : $t dc , z : $t)
out (c : $t dc , zz : $t)

var s : {S0 , S1 , S2 , S3 , S4}=S0
rules

(s , a , z) −> (s , c , zz)
| (S0 , , z) −> (S0 , ,) −− empty the feedback wire
| (S0 , ’< ,) −> (S1 , ’< ,) −− s t a r t o f frame
| (S1 , ’> ,) −> (S0 , ’> ,) −− end o f frame
| (S1 , ’< ,) −> (S2 , ’< ,) −− s t a r t o f f i r s t l i n e
| (S2 , ’> ,) −> (S3 , ’> ,) −− end o f f i r s t l i n e
| (S2 , ’p ,) −> (S2 , ’ v , p) −− f i r s t l i n e
| (S3 , ’> ,) −> (S0 , ’> ,) −− end o f l a s t l i n e
| (S3 , ’< ,) −> (S4 , ’< ,) −− s t a r t o f l i n e
| (S4 , ’p , z) −> (S4 , ’ z , p) −− l i n e
| (S4 , ’> ,) −> (S3 , ’> ,) −− end o f l i n e
;

141

net d1l z i = let r e c (o , l) = d1 l r z (i , l) in o ;� �
Listing 11.4: The library convol.cph� �

−− −− ===
−− −− SINGLE−ACTOR CONVOLUTIONS
−− −− Generic name : [c] conv<d><k>
−− −− where
−− −− [c] i s f o r centered convo lu t ion (d e f a u l t i s s h i f t e d)
−− −− <d> i s the s i g n a l dimension (”1” or ”2”)
−− −− <k> i s the ke rne l dimension (”13” , ”33” , . . .)
−− −− Examples :
−− −− conv113 implements a (s h i f t e d) 1x3 convo lu t ion on a 1D s i g na l (<x1 , . . . , xn>)
−− −− cconv233 implements a centered 3x3 convo lu t ion on a 2D image (<<x11 , . . , x1n

> , . . . ,<xm1 , . . . , xmn>>)
−− −− ===

#inc lude ”dc . cph” −− the [dc] type

−−−
−− −− CONV11NA : 1xN s h i f t e d convo lu t ion on s i g n a l s implemented as a s i n g l e ac tor
−− −− CONV11N(k , n , v) :<x 1 , x 2 , . . . , x i , . . . > = <f x 1 , f x 2 , . . . , f x i , . . . >
−− −− where
−− −− f (x i) = v i f i<N
−− −− f (x i) = (x { i−N+1}∗k [0] + . . . + x { i 1}∗k [N−2] + . . . + x { i }∗k [N−1]) / 2ˆn
−−−

actor conv113 (k : int<s ,m> array [3] , n : int , v : int<s ,m>)
in (i : int<s ,m> dc)

out (o : int<s ,m> dc)
var s : {S0 , S1 , S2 , S3} = S0
var z : int<s ,m> array [2]
rules
| (s : S0 , i : ’<) −> (s : S1 , o : ’<)
| (s : S1 , i : ’>) −> (s : S0 , o : ’>)
| (s : S1 , i : ’ p) −> (s : S2 , o : ’ v , z [0] : p)
| (s : S2 , i : ’ p) −> (s : S3 , o : ’ v , z [0] : p , z [1] : z [0])
| (s : S3 , i : ’ p) −> (s : S3 , o : ’ ((p∗k [2]+ z [0] ∗ k [1]+ z [1] ∗ k [0])>>n) , z [0] : p , z [1] : z [0])
| (s : S3 , i : ’>) −> (s : S0 , o : ’>)
;

actor conv115 (k : int<s ,m> array [5] , n : int , v : int<s ,m>)
in (i : int<s ,m> dc)

out (o : int<s ,m> dc)
var s : {S0 , S1 , S2 , S3 , S4 , S5} = S0
var z : int<s ,m> array [4]
rules
| (s : S0 , i : ’<) −> (s : S1 , o : ’<)
| (s : S1 , i : ’>) −> (s : S0 , o : ’>)
| (s : S1 , i : ’ p) −> (s : S2 , o : ’ v , z [0] : p)
| (s : S2 , i : ’ p) −> (s : S3 , o : ’ v , z [0] : p , z [1] : z [0])
| (s : S3 , i : ’ p) −> (s : S4 , o : ’ v , z [0] : p , z [1] : z [0] , z [2] : z [1])
| (s : S4 , i : ’ p) −> (s : S5 , o : ’ v , z [0] : p , z [1] : z [0] , z [2] : z [1] , z [3] : z [2])
| (s : S5 , i : ’ p) −> (s : S5 , o : ’ ((p∗k [4]+ z [0] ∗ k [3]+ z [1] ∗ k [2]+ z [2] ∗ k [1]+ z [3] ∗ k [0])>>n) , z

[0] : p , z [1] : z [0] , z [2] : z [1] , z [3] : z [2])
| (s : S5 , i : ’>) −> (s : S0 , o : ’>)
;

−−−
−− −− CCONV11NA : 1xN centered convo lu t ion on s i g n a l s implemented as a s i n g l e ac tor
−− −− ! ! Only de f ined f o r N=2∗M+1
−− −− CCONV113A(k , n , v) :<x 1 , x 2 , . . . , x i , . . . > = <f x 1 , f x 2 , . . . , f x i , . . . >

142

−− −− where
−− −− f (x i) = v i f i<M
−− −− f (x i) = (x { i−M}∗k [0] + . . . + x { i }∗k [M] + . . . + x { i+M}∗k [N−1]) / 2ˆn
−−−

actor cconv113 (k : int<s ,m> array [3] , n : int , v : int<s ,m>)
in (i : int<s ,m> dc)

out (o : int<s ,m> dc)
var s : {S0 , S1 , S2 , S3 , S4} = S0
var z : int<s ,m> array [2]
rules
| (s : S0 , i : ’<) −> (s : S1 , o : ’<)
| (s : S1 , i : ’>) −> (s : S0 , o : ’>)
| (s : S1 , i : ’ p) −> (s : S2 , z [0] : p)
| (s : S2 , i : ’ p) −> (s : S3 , o : ’ v , z [0] : p , z [1] : z [0])
| (s : S3 , i : ’ p) −> (s : S3 , o : ’ ((p∗k [2]+ z [0] ∗ k [1]+ z [1] ∗ k [0])>>n) , z [0] : p , z [1] : z [0])
| (s : S3 , i : ’>) −> (s : S4 , o : ’ v)
| (s : S4) −> (s : S0 , o : ’>)
;

actor cconv115 (k : int<s ,m> array [5] , n : int , v : int<s ,m>)
in (i : int<s ,m> dc)

out (o : int<s ,m> dc)
var s : {S0 , S1 , S2 , S3 , S4 , S5 , S6 , S7} = S0
var z : int<s ,m> array [4]
rules
| (s : S0 , i : ’<) −> (s : S1 , o : ’<)
| (s : S1 , i : ’>) −> (s : S0 , o : ’>)
| (s : S1 , i : ’ p) −> (s : S2 , z [0] : p)
| (s : S2 , i : ’ p) −> (s : S3 , z [0] : p , z [1] : z [0])
| (s : S3 , i : ’ p) −> (s : S4 , o : ’ v , z [0] : p , z [1] : z [0] , z [2] : z [1])
| (s : S4 , i : ’ p) −> (s : S5 , o : ’ v , z [0] : p , z [1] : z [0] , z [2] : z [1] , z [3] : z [2])
| (s : S5 , i : ’ p) −> (s : S5 , o : ’ ((p∗k [4]+ z [0] ∗ k [3]+ z [1] ∗ k [2]+ z [2] ∗ k [1]+ z [3] ∗ k [0])>>n) , z

[0] : p , z [1] : z [0] , z [2] : z [1] , z [3] : z [2])
| (s : S5 , i : ’>) −> (s : S6 , o : ’ v)
| (s : S6) −> (s : S7 , o : ’ v)
| (s : S7) −> (s : S0 , o : ’>)
;

−− −−−
−− CONV21<n>a : s h i f t e d 1xn convo lu t i ons on 2D images implemented as s i n g l e ac tor s
−− Genera l i sa t ion o f CONV11<n>a to 2D s i g n a l s
−− −−−

actor conv213 (k : int<s ,m> array [3] , n : int , v : int<s ,m>)
in (i : int<s ,m> dc)

out (o : int<s ,m> dc)
var s : {S00 , S0 , S1 , S2 , S3} = S00
var z : int<s ,m> array [2]
rules
| (s : S00 , i : ’<) −> (s : S0 , o : ’<)
| (s : S0 , i : ’>) −> (s : S00 , o : ’>)
| (s : S0 , i : ’<) −> (s : S1 , o : ’<)
| (s : S1 , i : ’>) −> (s : S0 , o : ’>)
| (s : S1 , i : ’ p) −> (s : S2 , o : ’ v , z [0] : p)
| (s : S2 , i : ’ p) −> (s : S3 , o : ’ v , z [0] : p , z [1] : z [0])
| (s : S3 , i : ’ p) −> (s : S3 , o : ’ ((p∗k [2]+ z [0] ∗ k [1]+ z [1] ∗ k [0])>>n) , z [0] : p , z [1] : z [0])
| (s : S3 , i : ’>) −> (s : S0 , o : ’>)
;

actor conv215 (k : int<s ,m> array [5] , n : int , v : int<s ,m>)
in (i : int<s ,m> dc)

out (o : int<s ,m> dc)

143

var s : {S00 , S0 , S1 , S2 , S3 , S4 , S5} = S00
var z : int<s ,m> array [4]
rules
| (s : S00 , i : ’<) −> (s : S0 , o : ’<)
| (s : S0 , i : ’>) −> (s : S00 , o : ’>)
| (s : S0 , i : ’<) −> (s : S1 , o : ’<)
| (s : S1 , i : ’>) −> (s : S0 , o : ’>)
| (s : S1 , i : ’ p) −> (s : S2 , o : ’ v , z [0] : p)
| (s : S2 , i : ’ p) −> (s : S3 , o : ’ v , z [0] : p , z [1] : z [0])
| (s : S3 , i : ’ p) −> (s : S4 , o : ’ v , z [0] : p , z [1] : z [0] , z [2] : z [1])
| (s : S4 , i : ’ p) −> (s : S5 , o : ’ v , z [0] : p , z [1] : z [0] , z [2] : z [1] , z [3] : z [2])
| (s : S5 , i : ’ p) −> (s : S5 , o : ’ ((p∗k [4]+ z [0] ∗ k [3]+ z [1] ∗ k [2]+ z [2] ∗ k [1]+ z [3] ∗ k [0])>>n) , z

[0] : p , z [1] : z [0] , z [2] : z [1] , z [3] : z [2])
| (s : S5 , i : ’>) −> (s : S0 , o : ’>)
;

−−
−−

−− CONV233 : s h i f t e d 3x3 convo lu t ion on 2D images implemented as a
−− s i n g l e ac tor (with e x t e rna l f i f o s f o r l i n e de l ay s)
−− CONV233(k , n , v):<<x 11 , . . . , x 1n> ,...<x m1 , . . . x mn>> = <<f (x 11) , . . . , f (x 1n) > ,...< f (

x m1) , . . . f (x mn)>>
−− where
−− f (x { i , j }) = (k {0 ,0}∗x { i−2, j−2} + k {0 ,1}∗x { i 2 , j−1} + k {0 ,2}∗x { i−2, j }
−− + k {1 ,0}∗x { i−1, j−2} + k {1 ,1}∗x { i 1 , j−1} + k {1 ,2}∗x { i−1, j }
−− + k {2 ,0}∗x { i , j−2} + k {2 ,1}∗x { i , j−1} + k {2 ,2}∗x { i , j }) >> n
−− (with x {−2, j}=x{−1, j}=x{ i ,−2}=x{ i ,−1}=v)
−− where :
−− +−−−−−+−−−−−+−−−−−+ +−−−−−−−−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−−+
−− | k00 | k01 | k02 | | x { i−2, j−2} | x { i−2, j−1} | x { i−2, j } |
−− +−−−−−+−−−−−+−−−−−+ +−−−−−−−−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−−+
−− | k10 | k11 | k12 | ∗ | x { i−1, j−2} | x { i−1, j−1} | x { i−1, j } |
−− +−−−−−+−−−−−+−−−−−+ +−−−−−−−−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−−+
−− | k20 | k21 | k22 | | x { i , j−2} | x { i , j−1} | x { i , j } | <− current p i x e l
−− +−−−−−+−−−−−+−−−−−+ +−−−−−−−−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−−+
−−

−−

actor conv233a (k : int<s ,m> array [3] [3] , n : int , v : int<s ,m>)
in (i : int<s ,m> dc , −− input

z0 : int<s ,m>, −− prev ious l i n e (f ed back through an ex t e rna l l i n k)
z1 : int<s ,m>) −− pre−prev ious l i n e (f ed back through an ex t e rna l l i n k)

out (o : int<s ,m> dc , −− output
oz0 : int<s ,m>, −− prev ious l i n e (f ed back through an ex t e rna l l i n k)
oz1 : int<s ,m>) −− prev ious l i n e (f ed back through an ex t e rna l l i n k)

var s : {S0 , S1 , S2 , S3 , S4 , S5 , S6 , S7 , S8} = S0
var x : int<s ,m> array [3] [2]
−− +−−−−−+−−−−−+−−−−−+ +−−−−−−−−−+−−−−−−−−−+−−−−−−−+
−− | k00 | k01 | k02 | | x [2] [1] | x [2] [0] | x6=p2 |
−− +−−−−−+−−−−−+−−−−−+ +−−−−−−−−−+−−−−−−−−−+−−−−−−−+
−− | k10 | k11 | k12 | ∗ | x [1] [1] | x [1] [0] | x3=p1 |
−− +−−−−−+−−−−−+−−−−−+ +−−−−−−−−−+−−−−−−−−−+−−−−−−−+
−− | k20 | k21 | k22 | | x [0] [1] | x [0] [0] | x0=p0 |
−− +−−−−−+−−−−−+−−−−−+ +−−−−−−−−−+−−−−−−−−−+−−−−−−−+
rules
| (s : S0 , i : ’<) −> (s : S1 , o : ’<) −− S tar t o f Image
| (s : S1 , i : ’>) −> (s : S0 , o : ’>) −− End of image
| (s : S1 , i : ’<) −> (s : S2 , o : ’<) −− S tar t o f f i r s t l i n e
| (s : S2 , i : ’ p0) −> (s : S2 , o : ’ v , oz0 : p0) −− Read f i r s t l i n e and

s t o r e in f i f o z0
| (s : S2 , i : ’>) −> (s : S3 , o : ’>) −− End of f i r s t l i n e

144

| (s : S3 , i : ’<) −> (s : S4 , o : ’<) −− S tar t o f second l i n e
| (s : S4 , i : ’ p0 , z0 : p1) −> (s : S4 , o : ’ v , oz1 : p1 , oz0 : p0) −− Read second l ine ,

s t o r e in f i f o z0 wh i l e moving z0 to z1
| (s : S4 , i : ’>) −> (s : S5 , o : ’>) −− End of second l i n e
| (s : S5 , i : ’>) −> (s : S0 , o : ’>) −− End of image
| (s : S5 , i : ’<) −> (s : S6 , o : ’<) −− S tar t o f t h i r d (and

subsequent) l i n e (s)
−− The prev ious and pre

−prev ious l i n e s are
a v a i l from z0 and

z1 resp .
| (s : S6 , i : ’ p0 , z0 : p1 , z1 : p2) −> (s : S7 , o : ’ v , −− Fi r s t p i x e l o f l i n e

x [2] [0] : p2 , x [1] [0] : p1 , x [0] [0] : p0 ,
oz1 : p1 , oz0 : p0)

| (s : S7 , i : ’ p0 , z0 : p1 , z1 : p2) −> (s : S8 , o : ’ v , −− Second p i x e l
x [2] [1] : x [2] [0] , x [2] [0] : p2 , x [1] [1] : x [1] [0] , x

[1] [0] : p1 , x [0] [1] : x [0] [0] , x [0] [0] : p0 ,
oz1 : p1 , oz0 : p0)

| (s : S8 , i : ’ p0 , z0 : p1 , z1 : p2) −> (s : S8 , −− Third and subsequent
p i x e l s o f l i n e

o : ’ ((k [0] [0] ∗ x [2] [1] + k [0] [1] ∗ x [2] [0] + k [0] [2] ∗ p2
+ k [1] [0] ∗ x [1] [1] + k [1] [1] ∗ x [1] [0] + k [1] [2] ∗ p1
+ k [2] [0] ∗ x [0] [1] + k [2] [1] ∗ x [0] [0] + k [2] [2] ∗ p0)

>>n) ,
x [2] [1] : x [2] [0] , x [2] [0] : p2 , x [1] [1] : x [1] [0] , x

[1] [0] : p1 , x [0] [1] : x [0] [0] , x [0] [0] : p0 ,
oz1 : p1 , oz0 : p0)

| (s : S8 , i : ’>) −> (s : S5 , o : ’>)
;

net conv233 (kerne l , norm , pad) i = let r e c (o , z0 , z1) = conv233a (kerne l , norm , pad) (i , z0 ,
z1) in o ;

actor conv255a (k : int<s ,m> array [5] [5] , n : int , v : int<s ,m>)
in (i : int<s ,m> dc , −− input

z0 : int<s ,m>, −− prev ious l i n e s (f ed back through an ex t e rna l l i n k)
z1 : int<s ,m>,
z2 : int<s ,m>,
z3 : int<s ,m>)

out (o : int<s ,m> dc , −− output
oz0 : int<s ,m>, −− prev ious l i n e s (f ed back through an ex t e rna l l i n k)
oz1 : int<s ,m>,
oz2 : int<s ,m>,
oz3 : int<s ,m>)

var s : {S0 , S1 , S2 , S3 , S4 , S5 , S6 , S7 , S8 , S9 , S10 , S11 , S12 , S13 , S14} = S0
var x : int<s ,m> array [5] [4]
−− +−−−−−+−−−−−+−−−−−+−−−−−+−−−−−+

+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+
−− | k00 | k01 | k02 | k03 | k04 | | x [4] [3] | x [4] [2] | x [4] [1] | x [4] [0] | p4

|
−− +−−−−−+−−−−−+−−−−−+−−−−−+−−−−−+

+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+
−− | k10 | k11 | k12 | k13 | k14 | | x [3] [3] | x [3] [2] | x [3] [1] | x [3] [0] | p3

|
−− +−−−−−+−−−−−+−−−−−+−−−−−+−−−−−+

+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+
−− | k20 | k21 | k22 | k23 | k24 | ∗ | x [2] [3] | x [2] [2] | x [2] [1] | x [2] [0] | p2

|
−− +−−−−−+−−−−−+−−−−−+−−−−−+−−−−−+

+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+
−− | k30 | k31 | k32 | k33 | k34 | | x [1] [3] | x [1] [2] | x [1] [1] | x [1] [0] | p1

|

145

−− +−−−−−+−−−−−+−−−−−+−−−−−+−−−−−+
+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+

−− | k40 | k41 | k42 | k43 | k44 | | x [0] [3] | x [0] [2] | x [0] [1] | x [0] [0] | p0
|

−− +−−−−−+−−−−−+−−−−−+−−−−−+−−−−−+
+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+

rules
| (s : S0 , i : ’<) −> (s : S1 , o : ’<) −− S tar t o f Image
| (s : S1 , i : ’>) −> (s : S0 , o : ’>) −− End of image

| (s : S1 , i : ’<) −> (s : S2 , o : ’<) −− S tar t o f f i r s t l i n e
| (s : S2 , i : ’ p0) −> (s : S2 , o : ’ v , oz0 : p0) −− Read f i r s t l i n e and

s t o r e in f i f o z0
| (s : S2 , i : ’>) −> (s : S3 , o : ’>) −− End of f i r s t l i n e

| (s : S3 , i : ’<) −> (s : S4 , o : ’<) −− S tar t o f second l i n e
| (s : S4 , i : ’ p0 , z0 : p1) −> (s : S4 , o : ’ v , oz1 : p1 , oz0 : p0) −− Read second l ine ,

s t o r e in f i f o z0 wh i l e moving z0 to z1
| (s : S4 , i : ’>) −> (s : S5 , o : ’>) −− End of second l i n e

| (s : S5 , i : ’<) −> (s : S6 , o : ’<) −− S tar t o f t h i r d l i n e
| (s : S6 , i : ’ p0 , z0 : p1 , z1 : p2) −> (s : S6 , o : ’ v , oz2 : p2 , oz1 : p1 , oz0 : p0)

−− Read t h i r d l ine ,
s t o r e in f i f o z0
wh i l e moving z0 to
z1 and z1 to z2

| (s : S6 , i : ’>) −> (s : S7 , o : ’>) −− End of t h i r d l i n e

| (s : S7 , i : ’<) −> (s : S8 , o : ’<) −− S tar t o f 4 th l i n e
| (s : S8 , i : ’ p0 , z0 : p1 , z1 : p2 , z2 : p3) −> (s : S8 , o : ’ v , oz3 : p3 , oz2 : p2 , oz1 : p1 , oz0 : p0)

−− Read 4 th l ine , s t o r e
in f i f o z0 wh i l e

moving z0 to z1 , z1
to z2 and z2 to z3

| (s : S8 , i : ’>) −> (s : S9 , o : ’>) −− End of 4 th l i n e

| (s : S9 , i : ’>) −> (s : S0 , o : ’>) −− End of image
| (s : S9 , i : ’<) −> (s : S10 , o : ’<) −− S tar t o f 5 th (and

subsequent) l i n e (s)
−− The prev ious l i n e s

are a v a i l from z0 ,
z1 , z2 and z3 resp .

| (s : S10 , i : ’ p0 , z0 : p1 , z1 : p2 , z2 : p3 , z3 : p4) −> (s : S11 , o : ’ v , −− Fi r s t p i x e l o f l i n e
x [4] [0] : p4 ,
x [3] [0] : p3 ,
x [2] [0] : p2 ,
x [1] [0] : p1 ,
x [0] [0] : p0 ,
oz3 : p3 , oz2 : p2 , oz1 : p1 , oz0 : p0)

| (s : S11 , i : ’ p0 , z0 : p1 , z1 : p2 , z2 : p3 , z3 : p4) −> (s : S12 , o : ’ v , −− Second p i x e l
x [4] [1] : x [4] [0] , x [4] [0] : p4 ,
x [3] [1] : x [3] [0] , x [3] [0] : p3 ,
x [2] [1] : x [2] [0] , x [2] [0] : p2 ,
x [1] [1] : x [1] [0] , x [1] [0] : p1 ,
x [0] [1] : x [0] [0] , x [0] [0] : p0 ,
oz3 : p3 , oz2 : p2 , oz1 : p1 , oz0 : p0)

| (s : S12 , i : ’ p0 , z0 : p1 , z1 : p2 , z2 : p3 , z3 : p4) −> (s : S13 , o : ’ v , −− Third p i x e l
x [4] [2] : x [4] [1] , x [4] [1] : x [4] [0] , x [4] [0] : p4 ,
x [3] [2] : x [3] [1] , x [3] [1] : x [3] [0] , x [3] [0] : p3 ,
x [2] [2] : x [2] [1] , x [2] [1] : x [2] [0] , x [2] [0] : p2 ,

146

x [1] [2] : x [1] [1] , x [1] [1] : x [1] [0] , x [1] [0] : p1 ,
x [0] [2] : x [0] [1] , x [0] [1] : x [0] [0] , x [0] [0] : p0 ,
oz3 : p3 , oz2 : p2 , oz1 : p1 , oz0 : p0)

| (s : S13 , i : ’ p0 , z0 : p1 , z1 : p2 , z2 : p3 , z3 : p4) −> (s : S14 , o : ’ v , −− 4 th p i x e l
x [4] [3] : x [4] [2] , x [4] [2] : x [4] [1] , x [4] [1] : x [4] [0] , x

[4] [0] : p4 ,
x [3] [3] : x [3] [2] , x [3] [2] : x [3] [1] , x [3] [1] : x [3] [0] , x

[3] [0] : p3 ,
x [2] [3] : x [2] [2] , x [2] [2] : x [2] [1] , x [2] [1] : x [2] [0] , x

[2] [0] : p2 ,
x [1] [3] : x [1] [2] , x [1] [2] : x [1] [1] , x [1] [1] : x [1] [0] , x

[1] [0] : p1 ,
x [0] [3] : x [0] [2] , x [0] [2] : x [0] [1] , x [0] [1] : x [0] [0] , x

[0] [0] : p0 ,
oz3 : p3 , oz2 : p2 , oz1 : p1 , oz0 : p0)

| (s : S14 , i : ’ p0 , z0 : p1 , z1 : p2 , z2 : p3 , z3 : p4) −> (s : S14 , −− 5 th
and subsequent p i x e l s o f l i n e

o : ’ ((k [0] [0] ∗ x [4] [3] + k [0] [1] ∗ x [4] [2] + k [0] [2] ∗ x
[4] [1] + k [0] [3] ∗ x [4] [0] + k [0] [4] ∗ p4

+ k [1] [0] ∗ x [3] [3] + k [1] [1] ∗ x [3] [2] + k [1] [2] ∗ x
[3] [1] + k [1] [3] ∗ x [3] [0] + k [1] [4] ∗ p3

+ k [2] [0] ∗ x [2] [3] + k [2] [1] ∗ x [2] [2] + k [2] [2] ∗ x
[2] [1] + k [2] [3] ∗ x [2] [0] + k [2] [4] ∗ p2

+ k [3] [0] ∗ x [1] [3] + k [3] [1] ∗ x [1] [2] + k [3] [2] ∗ x
[1] [1] + k [3] [3] ∗ x [1] [0] + k [3] [4] ∗ p1

+ k [4] [0] ∗ x [0] [3] + k [4] [1] ∗ x [0] [2] + k [4] [2] ∗ x
[0] [1] + k [4] [3] ∗ x [0] [0] + k [4] [4] ∗ p0)>>n) ,

x [4] [3] : x [4] [2] , x [4] [2] : x [4] [1] , x [4] [1] : x [4] [0] , x
[4] [0] : p4 ,

x [3] [3] : x [3] [2] , x [3] [2] : x [3] [1] , x [3] [1] : x [3] [0] , x
[3] [0] : p3 ,

x [2] [3] : x [2] [2] , x [2] [2] : x [2] [1] , x [2] [1] : x [2] [0] , x
[2] [0] : p2 ,

x [1] [3] : x [1] [2] , x [1] [2] : x [1] [1] , x [1] [1] : x [1] [0] , x
[1] [0] : p1 ,

x [0] [3] : x [0] [2] , x [0] [2] : x [0] [1] , x [0] [1] : x [0] [0] , x
[0] [0] : p0 ,

oz3 : p3 , oz2 : p2 , oz1 : p1 , oz0 : p0)
| (s : S14 , i : ’>) −> (s : S9 , o : ’>)
;

net conv255 (kerne l , norm , pad) i = let r e c (o , z0 , z1 , z2 , z3) = conv255a (kerne l , norm , pad)
(i , z0 , z1 , z2 , z3) in o ;

−− −−
−− CCONV233 : centered 3x3 convo lu t ion on 2D images implemented as a s i n g l e
−− actor (with e x t e rna l f i f o s f o r l i n e de l ay s)
−− CCONV233(k , n , v):<<x 11 , . . . , x 1n> ,...<x m1 , . . . x mn>> = <<f (x 11) , . . . , f (x 1n) > ,...< f (

x m1) , . . . f (x mn)>>
−− where
−− f (x { i , j }) = (k {0 ,0}∗x { i−1, j−1} + k {0 ,1}∗x { i 1 , j } + k {0 ,2}∗x { i−1, j+1}
−− + k {1 ,0}∗x { i , j−1} + k {1 ,1}∗x { i , j } + k {1 ,2}∗x { i , j+1}
−− + k {2 ,0}∗x { i +1, j−1} + k {2 ,1}∗x { i +1, j } + k {2 ,2}∗x { i +1, j +1}) >> n
−− (with x {0 , j}=x{m+1, j}=x{ i ,0}=x{ i , n+1}=v)
−− where :
−− +−−−−−+−−−−−+−−−−−+ +−−−−−−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−−−+
−− | k00 | k01 | k02 | | x { i−1, j−1} | x { i−1, j } | x { i−1, j+1} |
−− +−−−−−+−−−−−+−−−−−+ +−−−−−−−−−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−−−+
−− | k10 | k11 | k12 | ∗ | x { i , j−1} | x { i , j } <−−|−x { i , j+1}−−−|−− current p i x e l
−− +−−−−−+−−−−−+−−−−−+ +−−−−−−−−−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−−−+
−− | k20 | k21 | k22 | | x { i +1, j−1} | x { i +1, j } | x{ i +1, j+1} |

147

−− +−−−−−+−−−−−+−−−−−+ +−−−−−−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−−−+
−− Warning : t h i s ac tor r e qu i r e s ho r i z on t a l and v e r t i c a l b l ank ing (>3 p i x e l s between

rows ,
−− >l ine wid th between images)
−−

−−

actor cconv233a (k : int<s ,m> array [3] [3] , n : int , v : int<s ,m>)
in (i : int<s ,m> dc , −− input

z0 : int<s ,m> dc , −− prev ious l i n e (f ed back through an ex t e rna l l i n k)
z1 : int<s ,m> dc) −− pre−prev ious l i n e (f ed back through an ex t e rna l l i n k)

out (o : int<s ,m> dc , −− output
oz0 : int<s ,m> dc , −− prev ious l i n e (f ed back through an ex t e rna l l i n k)
oz1 : int<s ,m> dc) −− prev ious l i n e (f ed back through an ex t e rna l l i n k)

var s : {SoF , SoL1 , L1 , SoL2 , L2 , SoL3 , P1 , P2 , P3 , P4 , D1 , D2 , EoF} = SoF
var x : int<s ,m> array [3] [2]
−− +−−−−−+−−−−−+−−−−−+ +−−−−−−−−−+−−−−−−−−−+−−−−−−−+
−− | k00 | k01 | k02 | | x [2] [1] | x [2] [0] | x6=p2 |
−− +−−−−−+−−−−−+−−−−−+ +−−−−−−−−−+−−−−−−−−−+−−−−−−−+
−− | k10 | k11 | k12 | ∗ | x [1] [1] | x [1] [0] | x3=p1 |
−− +−−−−−+−−−−−+−−−−−+ +−−−−−−−−−+−−−−−−−−−+−−−−−−−+
−− | k20 | k21 | k22 | | x [0] [1] | x [0] [0] | x0=p0 |
−− +−−−−−+−−−−−+−−−−−+ +−−−−−−−−−+−−−−−−−−−+−−−−−−−+
rules
| (s : SoF , i : ’<) −> (s : SoL1 , o : ’<)
| (s : SoL1 , i : ’>) −> (s : SoF , o : ’>)
| (s : SoL1 , i : ’<) −> (s : L1 , oz0 : ’<)
| (s : L1 , i : ’ p) −> (s : L1 , oz0 : ’ p)
| (s : L1 , i : ’>) −> (s : SoL2 , oz0 : ’>)
| (s : SoL2 , i : ’< , z0 : ’<) −> (s : L2 , o : ’< , oz1 : ’< , oz0 : ’<)
| (s : L2 , i : ’ p0 , z0 : ’ p1) −> (s : L2 , o : ’ v , oz1 : ’ p1 , oz0 : ’ p0)
| (s : L2 , i : ’> , z0 : ’>) −> (s : SoL3 , o : ’> , oz1 : ’> , oz0 : ’>)
| (s : SoL3 , i : ’< , z0 : ’< , z1 : ’<) −> (s : P1 , o : ’< , oz1 : ’< , oz0 : ’<)
| (s : SoL3 , i : ’>) −> (s : D1 , oz1 : ’> , oz0 : ’>)
| (s : P1 , i : ’ p0 , z0 : ’ p1 , z1 : ’ p2) −> (s : P2 , x [2] [0] : p2 , x [1] [0] : p1 , x [0] [0] : p0 , oz1 : ’ p1 ,

oz0 : ’ p0)
| (s : P2 , i : ’ p0 , z0 : ’ p1 , z1 : ’ p2) −> (s : P3 ,

o : ’ v ,
x [2] [1] : x [2] [0] , x [2] [0] : p2 , x [1] [1] : x [1] [0] ,

x [1] [0] : p1 , x [0] [1] : x [0] [0] , x [0] [0] : p0 ,
oz1 : ’ p1 , oz0 : ’ p0)

| (s : P3 , i : ’ p0 , z0 : ’ p1 , z1 : ’ p2) −> (s : P3 ,
o : ’ ((k [0] [0] ∗ x [2] [1] + k [0] [1] ∗ x [2] [0] + k

[0] [2] ∗ p2
+ k [1] [0] ∗ x [1] [1] + k [1] [1] ∗ x [1] [0] + k

[1] [2] ∗ p1
+ k [2] [0] ∗ x [0] [1] + k [2] [1] ∗ x [0] [0] + k

[2] [2] ∗ p0)>>n) ,
x [2] [1] : x [2] [0] , x [2] [0] : p2 , x [1] [1] : x [1] [0] ,

x [1] [0] : p1 , x [0] [1] : x [0] [0] , x [0] [0] : p0 ,
oz1 : ’ p1 , oz0 : ’ p0)

| (s : P3 , i : ’> , z0 : ’> , z1 : ’>) −> (s : P4 , o : ’ v , oz1 : ’> , oz0 : ’>)
| (s : P4) −> (s : SoL3 , o : ’>) −− t h i s r e qu i r e s ho r i z on t a l

b l ank ing
| (s : D1 , z0 : ’< , z1 : ’<) −> (s : D2 , o : ’<) −− t h i s r e qu i r e s v e r t i c a l

b l ank ing (at l e a s t > image width)
| (s : D2 , z0 : ’ x , z1 : ’ y) −> (s : D2 , o : ’ v)
| (s : D2 , z0 : ’> , z1 : ’>) −> (s : EoF , o : ’>)
| (s : EoF , z0 : ’> , z1 : ’>) −> (s : SoF , o : ’>)
;

148

net cconv233 (kerne l , norm , pad) i = let r e c (o , z0 , z1) = cconv233a (kerne l , norm , pad) (i ,
z0 , z1) in o ;

−− −−
−− CCONV255 : centered 5x5 convo lu t ion on 2D images implemented as a s i n g l e
−− actor (with e x t e rna l f i f o s f o r l i n e de l ay s)
−− CCONV255(k , n , v):<<x 11 , . . . , x 1n> ,...<x m1 , . . . x mn>> = <<f (x 11) , . . . , f (x 1n) > ,...< f (

x m1) , . . . f (x mn)>>
−− where
−− f (x { i , j }) = (k {0 ,0}∗x { i−2, j−2} + k {0 ,1}∗x { i−2, j−1} + k {0 ,2}∗x { i−2, j } + k

{0 ,3}∗x { i−2, j+1} + k {0 ,4}∗x { i−2, j+2}
−− + k {1 ,0}∗x { i−1, j−2} + k {1 ,1}∗x { i−1, j−1} + k {1 ,2}∗x { i−1, j } + k

{1 ,3}∗x { i−1, j+1} + k {1 ,4}∗x { i−1, j+2}
−− + k {2 ,0}∗x { i , j−2} + k {2 ,1}∗x { i , j−1} + k {2 ,2}∗x { i , j } + k {2 ,3}∗x

{ i , j+1} + k {2 ,4}∗x { i , j+2}
−− + k {3 ,0}∗x { i +1, j−2} + k {3 ,1}∗x { i +1, j−1} + k {3 ,2}∗x { i +1, j } + k

{3 ,3}∗x { i +1, j+1} + k {3 ,4}∗x { i +1, j+2}
−− + k {4 ,0}∗x { i +2, j−2} + k {4 ,1}∗x { i +2, j−1} + k {4 ,2}∗x { i +2, j } + k

{4 ,3}∗x { i +2, j+1} + k {4 ,4}∗x { i +2, j +2})>>n
−− (with x {0 , j}=x {−1, j}=x {m+1, j}=x {m+2, j}=x { i ,0}=x { i ,−1}=x { i , n+1}=x { i , n+2}=v)
−− +−−−−−+−−−−−+−−−−−+−−−−−+−−−−−+

+−−−−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−−+
−− | k00 | k01 | k02 | k03 | k04 | | x{ i−2, j−2} | x{ i−2, j−1} | x{ i−2, j } | x{ i−2, j+1}

| x{ i−2, j+2} |
−− +−−−−−+−−−−−+−−−−−+−−−−−+−−−−−+

+−−−−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−−+
−− | k10 | k11 | k12 | k13 | k14 | | x{ i−1, j−2} | x{ i−1, j−1} | x{ i−1, j } | x{ i−1, j+1}

| x{ i−1, j+2} |
−− +−−−−−+−−−−−+−−−−−+−−−−−+−−−−−+

+−−−−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−−+
−− | k20 | k21 | k22 | k23 | k24 | ∗ | x{ i , j−2} | x{ i , j−1} | x{ i , j } | x{ i , j+1}

| x{ i , j+2} |
−− +−−−−−+−−−−−+−−−−−+−−−−−+−−−−−+

+−−−−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−−+
−− | k30 | k31 | k32 | k33 | k34 | | x{ i +1, j−2} | x{ i +1, j−1} | x{ i +1, j } | x{ i +1, j+1}

| x{ i +1, j+2} |
−− +−−−−−+−−−−−+−−−−−+−−−−−+−−−−−+

+−−−−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−−+
−− | k40 | k41 | k42 | k43 | k44 | | x{ i +2, j−2} | x{ i +2, j−1} | x{ i +2, j } | x{ i +2, j+1}

| x{ i +2, j+2} |
−− +−−−−−+−−−−−+−−−−−+−−−−−+−−−−−+

+−−−−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−−+
−− Warning : t h i s ac tor r e qu i r e s ho r i z on t a l and v e r t i c a l b l ank ing (>3 p i x e l s between

rows ,
−− >l ine wid th between images)
−−

−−

actor cconv255a (k : int<s ,m> array [5] [5] , n : int , v : int<s ,m>)
in (i : int<s ,m> dc , −− input

z0 : int<s ,m> dc , −− prev ious l i n e s (f ed back through an ex t e rna l l i n k)
z1 : int<s ,m> dc ,
z2 : int<s ,m> dc ,
z3 : int<s ,m> dc)

out (o : int<s ,m> dc , −− output
oz0 : int<s ,m> dc , −− prev ious l i n e s (f ed back through an ex t e rna l l i n k)
oz1 : int<s ,m> dc ,
oz2 : int<s ,m> dc ,
oz3 : int<s ,m> dc)

var s : {SoF , SoL1 , L1 , SoL2 , L2 , SoL3 , L3 , SoL4 , L4 , SoL5 , P1 , P2 , P3 , P4 , P5 , E1 , E2 , F11 , F12 , F21 , F22 ,
EoF} = SoF

var x : int<s ,m> array [5] [4]

149

−− +−−−−−+−−−−−+−−−−−+−−−−−+−−−−−+
+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+

−− | k00 | k01 | k02 | k03 | k04 | | x [4] [3] | x [4] [2] | x [4] [1] | x [4] [0] | p4
|

−− +−−−−−+−−−−−+−−−−−+−−−−−+−−−−−+
+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+

−− | k10 | k11 | k12 | k13 | k14 | | x [3] [3] | x [3] [2] | x [3] [1] | x [3] [0] | p3
|

−− +−−−−−+−−−−−+−−−−−+−−−−−+−−−−−+
+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+

−− | k20 | k21 | k22 | k23 | k24 | ∗ | x [2] [3] | x [2] [2] | x [2] [1] | x [2] [0] | p2
|

−− +−−−−−+−−−−−+−−−−−+−−−−−+−−−−−+
+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+

−− | k30 | k31 | k32 | k33 | k34 | | x [1] [3] | x [1] [2] | x [1] [1] | x [1] [0] | p1
|

−− +−−−−−+−−−−−+−−−−−+−−−−−+−−−−−+
+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+

−− | k40 | k41 | k42 | k43 | k44 | | x [0] [3] | x [0] [2] | x [0] [1] | x [0] [0] | p0
|

−− +−−−−−+−−−−−+−−−−−+−−−−−+−−−−−+
+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+

rules
| (s : SoF , i : ’<) −> (s : SoL1 , o : ’<) −− S tar t o f Image
| (s : SoL1 , i : ’>) −> (s : SoF , o : ’>) −− End of image

| (s : SoL1 , i : ’<) −> (s : L1 , oz0 : ’<) −− S tar t o f f i r s t
l i n e

| (s : L1 , i : ’ p0) −> (s : L1 , oz0 : ’ p0) −− Read f i r s t l i n e
and s t o r e in f i f o z0

| (s : L1 , i : ’>) −> (s : SoL2 , oz0 : ’>) −− End of f i r s t l i n e

| (s : SoL2 , i : ’< , z0 : ’<) −> (s : L2 , oz1 : ’< , oz0 : ’<) −− S tar t o f second
l i n e

| (s : L2 , i : ’ p0 , z0 : ’ p1) −> (s : L2 , oz1 : ’ p1 , oz0 : ’ p0) −− Read second l ine ,
s t o r e in f i f o z0 wh i l e moving z0 to z1

| (s : L2 , i : ’> , z0 : ’>) −> (s : SoL3 , oz1 : ’> , oz0 : ’>) −− End of second l i n e

| (s : SoL3 , i : ’< , z0 : ’< , z1 : ’<) −> (s : L3 , o : ’< , oz2 : ’< , oz1 : ’< , oz0 : ’<) −− S tar t o f
t h i r d l i n e

| (s : L3 , i : ’ p0 , z0 : ’ p1 , z1 : ’ p2) −> (s : L3 , o : ’ v , oz2 : ’ p2 , oz1 : ’ p1 , oz0 : ’ p0)
−− Read t h i r d l ine ,

s t o r e in f i f o z0
wh i l e moving z0 to
z1 and z1 to z2

| (s : L3 , i : ’> , z0 : ’> , z1 : ’>) −> (s : SoL4 , o : ’> , oz2 : ’> , oz1 : ’> , oz0 : ’>) −− End of
t h i r d l i n e

| (s : SoL4 , i : ’< , z0 : ’< , z1 : ’< , z2 : ’<) −> (s : L4 , o : ’< , oz3 : ’< , oz2 : ’< , oz1 : ’< , oz0
: ’<) −− S tar t o f 4 th l i n e

| (s : L4 , i : ’ p0 , z0 : ’ p1 , z1 : ’ p2 , z2 : ’ p3) −> (s : L4 , o : ’ v , oz3 : ’ p3 , oz2 : ’ p2 , oz1 : ’ p1 ,
oz0 : ’ p0)

−− Read 4 th l ine , s t o r e
in f i f o z0 wh i l e

moving z0 to z1 , z1
to z2 and z2 to z3

| (s : L4 , i : ’> , z0 : ’> , z1 : ’> , z2 : ’>) −> (s : SoL5 , o : ’> , oz3 : ’> , oz2 : ’> , oz1 : ’> , oz0
: ’>) −− End of 4 th l i n e

| (s : SoL5 , i : ’< , z0 : ’< , z1 : ’< , z2 : ’< , z3 : ’<) −> (s : P1 , o : ’< , oz3 : ’< , oz2 : ’< , oz1 : ’< ,
oz0 : ’<)

| (s : SoL5 , i : ’>) −> (s : F11)

150

| (s : P1 , i : ’ p0 , z0 : ’ p1 , z1 : ’ p2 , z2 : ’ p3 , z3 : ’ p4) −> (s : P2 , −− Fi r s t p i x e l o f
l i n e

x [4] [0] : p4 ,
x [3] [0] : p3 ,
x [2] [0] : p2 ,
x [1] [0] : p1 ,
x [0] [0] : p0 ,
oz3 : ’ p3 , oz2 : ’ p2 , oz1 : ’ p1 , oz0 : ’ p0)

| (s : P2 , i : ’ p0 , z0 : ’ p1 , z1 : ’ p2 , z2 : ’ p3 , z3 : ’ p4) −> (s : P3 , −− Second p i x e l
x [4] [1] : x [4] [0] , x [4] [0] : p4 ,
x [3] [1] : x [3] [0] , x [3] [0] : p3 ,
x [2] [1] : x [2] [0] , x [2] [0] : p2 ,
x [1] [1] : x [1] [0] , x [1] [0] : p1 ,
x [0] [1] : x [0] [0] , x [0] [0] : p0 ,
oz3 : ’ p3 , oz2 : ’ p2 , oz1 : ’ p1 , oz0 : ’ p0)

| (s : P3 , i : ’ p0 , z0 : ’ p1 , z1 : ’ p2 , z2 : ’ p3 , z3 : ’ p4) −> (s : P4 , o : ’ v , −− Third p i x e l
x [4] [2] : x [4] [1] , x [4] [1] : x [4] [0] , x [4] [0] : p4 ,
x [3] [2] : x [3] [1] , x [3] [1] : x [3] [0] , x [3] [0] : p3 ,
x [2] [2] : x [2] [1] , x [2] [1] : x [2] [0] , x [2] [0] : p2 ,
x [1] [2] : x [1] [1] , x [1] [1] : x [1] [0] , x [1] [0] : p1 ,
x [0] [2] : x [0] [1] , x [0] [1] : x [0] [0] , x [0] [0] : p0 ,
oz3 : ’ p3 , oz2 : ’ p2 , oz1 : ’ p1 , oz0 : ’ p0)

| (s : P4 , i : ’ p0 , z0 : ’ p1 , z1 : ’ p2 , z2 : ’ p3 , z3 : ’ p4) −> (s : P5 , o : ’ v , −− 4 th p i x e l
x [4] [3] : x [4] [2] , x [4] [2] : x [4] [1] , x [4] [1] : x [4] [0] , x

[4] [0] : p4 ,
x [3] [3] : x [3] [2] , x [3] [2] : x [3] [1] , x [3] [1] : x [3] [0] , x

[3] [0] : p3 ,
x [2] [3] : x [2] [2] , x [2] [2] : x [2] [1] , x [2] [1] : x [2] [0] , x

[2] [0] : p2 ,
x [1] [3] : x [1] [2] , x [1] [2] : x [1] [1] , x [1] [1] : x [1] [0] , x

[1] [0] : p1 ,
x [0] [3] : x [0] [2] , x [0] [2] : x [0] [1] , x [0] [1] : x [0] [0] , x

[0] [0] : p0 ,
oz3 : ’ p3 , oz2 : ’ p2 , oz1 : ’ p1 , oz0 : ’ p0)

| (s : P5 , i : ’ p0 , z0 : ’ p1 , z1 : ’ p2 , z2 : ’ p3 , z3 : ’ p4) −> (s : P5 , −− 5
th and subsequent p i x e l s o f l i n e

o : ’ ((k [0] [0] ∗ x [4] [3] + k [0] [1] ∗ x [4] [2] + k [0] [2] ∗ x
[4] [1] + k [0] [3] ∗ x [4] [0] + k [0] [4] ∗ p4

+ k [1] [0] ∗ x [3] [3] + k [1] [1] ∗ x [3] [2] + k [1] [2] ∗ x
[3] [1] + k [1] [3] ∗ x [3] [0] + k [1] [4] ∗ p3

+ k [2] [0] ∗ x [2] [3] + k [2] [1] ∗ x [2] [2] + k [2] [2] ∗ x
[2] [1] + k [2] [3] ∗ x [2] [0] + k [2] [4] ∗ p2

+ k [3] [0] ∗ x [1] [3] + k [3] [1] ∗ x [1] [2] + k [3] [2] ∗ x
[1] [1] + k [3] [3] ∗ x [1] [0] + k [3] [4] ∗ p1

+ k [4] [0] ∗ x [0] [3] + k [4] [1] ∗ x [0] [2] + k [4] [2] ∗ x
[0] [1] + k [4] [3] ∗ x [0] [0] + k [4] [4] ∗ p0)>>n) ,

x [4] [3] : x [4] [2] , x [4] [2] : x [4] [1] , x [4] [1] : x [4] [0] , x
[4] [0] : p4 ,

x [3] [3] : x [3] [2] , x [3] [2] : x [3] [1] , x [3] [1] : x [3] [0] , x
[3] [0] : p3 ,

x [2] [3] : x [2] [2] , x [2] [2] : x [2] [1] , x [2] [1] : x [2] [0] , x
[2] [0] : p2 ,

x [1] [3] : x [1] [2] , x [1] [2] : x [1] [1] , x [1] [1] : x [1] [0] , x
[1] [0] : p1 ,

x [0] [3] : x [0] [2] , x [0] [2] : x [0] [1] , x [0] [1] : x [0] [0] , x
[0] [0] : p0 ,

oz3 : ’ p3 , oz2 : ’ p2 , oz1 : ’ p1 , oz0 : ’ p0)

151

| (s : P5 , i : ’> , z0 : ’> , z1 : ’> , z2 : ’> , z3 : ’>) −> (s : E1 , o : ’ v , oz3 : ’> , oz2 : ’> , oz1 : ’> , oz0
: ’>)

| (s : E1) −> (s : E2 , o : ’ v) −− F i l l i n g end o f
l i n e (two padding p i x e l s)

| (s : E2) −> (s : SoL5 , o : ’>)

| (s : F11 , z0 : ’< , z1 : ’< , z2 : ’< , z3 : ’<) −> (s : F12 , o : ’< , oz0 : ’<) −− F i l l i n g
end o f frame (two padding l i n e s)

| (s : F12 , z0 : ’ p1 , z1 : ’ p2 , z2 : ’ p3 , z3 : ’ p4) −> (s : F12 , o : ’ v , oz0 : ’ p1)
| (s : F12 , z0 : ’> , z1 : ’> , z2 : ’> , z3 : ’>) −> (s : F21 , o : ’> , oz0 : ’>)
| (s : F21 , z0 : ’<) −> (s : F22 , o : ’<)
| (s : F22 , z0 : ’ p0) −> (s : F22 , o : ’ v)
| (s : F22 , z0 : ’>) −> (s : EoF , o : ’>)

| (s : EoF) −> (s : SoF , o : ’>) −− End of frame
;

net cconv255 (kerne l , norm , pad) i = let r e c (o , z0 , z1 , z2 , z3) = cconv255a (kerne l , norm , pad
) (i , z0 , z1 , z2 , z3) in o ;� �

Listing 11.5: The library stream ops.cph� �
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Basic opera t ions on uns truc tured streams
−− 2015−07−17, JS
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−
−− D − One−sample de lay
−− D(v) : x1 , x2 , . . . = v , x1 , x2 , . . .
−−

actor d (v : $t)
in (a : $t)
out (c : $t)

var z : $t = v
rules
| a : x −> (c : z , z : x)
;

−−
−− Dk − k−sample de lay on uns truc tured streams
−− Dk(k , v) : x1 , x2 , . . . , = v , . . . , v , x1 , x2 , . . .
−− \−−k−−/
−−

actor dka (k : int , v : $t)
in (a : $t , b : $t)
out (c : $t)

var s : {S0 , S1} = S0
var i : i n t = 0
rules
| (s : S0 , a : x) when i<k−1 −> (c : v , i : i +1)
| (s : S0 , a : x) −> (c : v , s : S1)
| (s : S1 , a : x , b : y) −> c : y
;

net dk k v i = dka (k , v) (i , i) ;

−−
−− sample − n−>1 subsampling on uns truc tured streams

152

−− sample (n) : x 1 , x 2 , . . . , = x n , x 2n , . . .
−−

actor sample (n : i n t)
in (i : $t)
out (o : $t)

var k : i n t = 0
rules
| i : x when k<n−1 −> k : k+1
| i : x when k=n−1 −> (o : x , k : 0)
;� �

153

Chapter 12

Foreign function interfacing

This chapter describes how to make use of foreign functions in CAPH program using a simple example.
Consider the following program, in which the multiplication in the scale actor is performed by

calling a foreign (external) function1 :

Example :

function mult = extern "mult", "mult", "mult" :

signed<s> * signed<s> -> signed<s>;

actor scale (k:signed<8>)

in (a:signed<8>)

out (c:signed<8>)

rules

| a:v -> c:mult(v,k)

stream i:signed<8> from "sample.txt";

stream o:signed<8> to "result.txt";

net o = scale [2] i;

Compiling this program with the SystemC back-end, with :

caph -systemc scale.cph

will produce (among others – see Chap. 10) a file scale act.cpp containing the implementation
of the SystemC module describing the scale actor and containing a call to a function sc int<8>

mult(sc int<8> x, sc int<8> y). This function must be declared (resp. defined) in a file named
extfns.h (resp. extfns.cpp). These two files must be accessible when compiling the SystemC exe-
cutable. Here’s a possible (and obvious) contents for these files :

File extfns.h� �
#ifndef extfns h

1The purpose of the example is only to demonstrate how to use the foreign function facilities; the scale can of course
be written in a more straightforward manner using the builtin multiplication operator, like exemplified in Sec. 2.4.4 for
example.

154

#define extfns h

sc int<8> mult (sc int<8> x , sc int<8> y) ;

#endif� �
File extfns.cpp� �

#include <systemc . h>

sc int<8> mult (sc int<8> x , sc int<8> y)
{

sc int<8> r e s = x∗y ;
return r e s ;

}� �
Things are similar for the VHDL backend. Here the generated file scale act.vhd will refer to

package named work.extfns which is supposed to contain the definition of the mult function. Here’s
a possible definition for the corresponding file :

File extfns.vhd� �
l ibrary i e e e ;
use i e e e . std logic 1164 . a l l ;
use i e e e . numeric std . a l l ;

package e x t f n s i s
function mult (a , b : s igned (7 downto 0)) return s igned ;

end e x t f n s ;

package body e x t f n s i s
function mult (a , b : s igned (7 downto 0)) return s igned i s

variable r e s : s i gned (15 downto 0) ;
begin

r e s := a ∗ b ;
return r e s (7 downto 0) ;

end ;
end package body e x t f n s ;� �

Programs making using of external functions have to provide a Caml implementation of the cor-
responding functions in order to be simulated2. Integration of this code within the simulator is done
is done using the dynamic linking facilities offered by the Caml runtime3. For this a file extfns.ml

must be written (and accessible from the directory from which the simulator is run), “registering” the
corresponding functions. Here’s the contents of this file for the scale example :

File extfns.ml� �
l et mult [x ; y] = x ∗ y
l et = Foreign . r e g i s t e r ”mult” mult� �

2In theory, the simulator could use the C++ implementation but this is currently not implemented.
3simply because the simulator itself is written . . . in Caml.

155

The first argument to the function Foreign.register is the name by which the mult function will
be called in the CAPH program (same name here, but another name could be used in case of name
conflicts).

Due to technical limitations, interfacing of foreign functions at the simulator level is limited to
functions taking and returning integer type(s).

156

Chapter 13

Compiler options

Compiler usage : caphc [options...] file

General options

-prefix set prefix output file names (default is main source file basename)
-I add path to the list of dirs to search for include
-dump tenv dump builtin typing environment (for debug only)
-dump typed dump typed program (for debug only)
-phantom types print sized types using underlying representation (not for the casual user)
-dump senv dump static environment (for debug only)
-dump boxes dump static representation of boxes
-dump fsms dump a graphical representation (.dot) of stateful boxes
-dump ir dump intermediate representation (just before backends))
-dump denv dump dynamic environment (for debug only)
-suppress cast warnings do not print warnings for dubious type casts
-show signness display integer constants with signness suffix (S,U)
-flat variants display constructed values without parens
-sim run the program through the simulator
-dot generate .dot representation of the program
-xdf generate .xdf representation of the network and .cal descriptions of the actors
-dif generate .dif representation of the program
-systemc activate the SystemC backend
-vhdl activate the VHDL backend
-target dir set target directory for generated files (default is current directory)
-D define macro symbol
-make generate makefile dependencies
-proj file set project file name (default: same as main source file)
-version print version of the compiler
–v print version of the compiler
-ignore pragmas ignore all pragma directives
-split output frames generate separate files when outputing data structured as frames (simulation and systemc only)
-restrict inputs undocumented
-restrict outputs undocumented

157

DOT-specific options

-dot unlabeled edges do not annotate graph edges
-dot wire annots print wire annotations (phase/fifo size) when available (implies [-dot show indexes])
-dot unboxed ios do not outline io boxes with a triangle shape
-dot show indexes print box and wire indexes
-dot simple boxes print boxes without i/o slots

Simulation-specific options

-infer mocs compute model of computation for boxes
-dump sdf fifo sizes dump statically computed FIFO sizes for SDF graphs (implies [-infer mocs])
-chan cap set default capacity for channel (default:256)
-warn channels emit a warning when channels are full
-dump channel stats dump channel statictics (max occ,...) after run
-abbrev dc ctors use abbreviated syntax when reading/writing values with of type [t dc] from/to file
-trace run in trace mode
-trace ports trace change of values at IO ports (simulation and SystemC)
-stop after stop after n run cycles
-stdin redirect stdin from file
-stdout redirect stdout to file
-sim extra add file to the list of external modules for the interpreter
-absint run the abstract interpreter on the given box
-ai max cycles set the maximum number of cycles when performing abstract interpretation of boxes (default:32)

SystemC-specific options

-sc stop time stop after n ns
-sc io monitor dump i/o start and stop times to file
-sc io monitor file set file for dumping i/o start times (default: io monitor.dat)
-sc stop when idle stop when outputs have been inactive for n ns
-sc clock period set clock period (ns) (default: 10)
-sc default fifo capacity set default fifo capacity (systemc only) (default: 256)
-sc trace set trace mode
-sc dump fifos dump fifo contents
-sc trace fifos trace fifo usage in .vcd file
-sc dump fifo stats dump fifo usage statistics after run
-sc fifo stats file set file for dumping fifo statistics (default: fifo stats.dat)
-sc use int use int for representing signed and unsigned values
-sc abbrev dc ctors use abbreviated syntax when reading/writing values with of type [t dc] from/to file
-sc istream period set pixel period for input streams in the testbench (in clock periods, default=2)
-sc istream hblank set horizontal blanking for input streams (in clock cycles)
-sc istream vblank set vertical blanking for input streams (in clock cycles)
-sc extra add file to the list of external modules for the SystemC backend

158

VHDL-specific options

-vhdl num lib set library for handling numerical operations (default: ieee.numeric std)
-vhdl annot file give the name of the back-annotation file
-vhdl fifo offset add offset to each FIFO size when read in back-annotation file (default value: 2)
-vhdl default int size set default size for ints (default: 8)
-vhdl default fifo capacity set default fifo capacity (default: 4)
-vhdl small fifo model set model for small fifos (default: fifo)
-vhdl big fifo model set model for big fifos (default: fifo)
-vhdl fifo model threshold set threshold for switching between fifo models
-vhdl extra add file to the list of external modules for the VHDL backend
-vhdl reset duration set duration of the reset signal (ns)
-vhdl clock period set clock period (ns) (default: 10)
-vhdl seq delay set propagation time in sequentiel logic (ns) (default: 1)
-vhdl istream period set pixel period for input streams in the testbench (in clock periods, default is 1)
-vhdl istream blanking activate blanking when reading .bin source files for input streams
-vhdl istream skew set clock skew when reading .bin source files for input streams (default: 0)
-vhdl trace add diag pins in vhdl code (actor states and fifo caps)
-vhdl warn on unsized consts warn whenever the size of integer constants cannot be determined (default: false)
-vhdl use native mult use builtin operator for multiplication (warning: this may cause bound check failures)
-vhdl init array at decl initialize arrays at declaration (warning: this may be not supported by the synthetizer)
-vhdl float support enable float support
-vhdl io converters generate C programs for reading/writing input/output files involving user-defined types
-vhdl rename io wires rename IO wires in the net.vhd and tb.vhd files according to the connected IO stream/port
-vhdl tb external clock make clock and reset input signals for the generated testbench (default: false)
-vhdl tb inline io use inline processes for I/O in the generated testbench instead of reading/writing files (default: false)

159

Chapter 14

Implementation of variant types

This chapter gives a very brief overview of how CAPH variant type declarations are translated into
SystemC and VHDL code. The casual programmer is normally not concerned with this.

For this, we take the example of the (polymorphic) option type introduced in Sec. 2.4.1 :

type $t option =

Absent

| Present of $t

The code generated by the SystemC backend when this type is instanciated with t=signed<8>, for
example, is given in listing 14.11. The underlying representation is basically a structure with one field
for the tag and the other for the associated data. The inlined iostream operators are used to read
(resp. write) input and output data to text files.

Listing 14.1: Code generated by the SystemC backend for the option type declaration� �
1 class t option int8 {
2 public :
3 enum t tag { Absent , Present } ;
4 struct t data { sc int<8> present ; } ;
5 struct { t tag tag ; t data data ; } repr ;
6 ˜ t option () { } ;
7 t option (void) { } ;
8 t option (tag<Absent>) { repr . tag = Absent ; } ;
9 t option (tag<Present >, sc int<8> v) { repr . tag = Present ; r epr . data .

pre s ent = v ; } ;
10 inl ine friend : : s td : : ostream& operator << (: : s td : : ostream& os , const

t option<sc int<8> >& v) {
11 switch (v . r epr . tag) {
12 case Absent : os << ”Absent ” ; return os ;
13 case Present : os << ” Present ” << v . repr . data . pre s ent ; return os ;
14 }
15 }
16 inl ine friend : : s td : : i s t ream& operator >> (: : s td : : i s t ream& is , t option

<sc int<8> >& v) {
17 char tmp [6 4] ;

1This code is produced in file xxx globals.h, where xxx is the name of the top module.

160

18 i s >> tmp ;
19 i f (i s . good ()) {
20 i f (! strcmp (tmp , ”Absent”)) { v . repr . tag=Absent ; return i s ;}
21 i f (! strcmp (tmp , ” Present ”)) { v . repr . tag=Present ; i s >> v . repr .

data . pre sent ; return i s ;}
22 }
23 }
24 } ;� �

The code generated by the VHDL backend2 is given in listing 14.2. The generated package includes
three kinds of functions :

• inspectors, for testing if the binary representation3 of a value matches a given tag (is_xxx),

• injectors, for building the binary representation of an option value (mk_xxx),

• extractors, for extracting the data part of a constructed value (get_xxx).

As can be observed4, variant types are encoded by concatenating a tag part and a data part.
The tag part (MSBs) contains an integer representing the tag of the encoded value. By default,

this integer is 0 for the first tag, 1 for the second, etc. It is possible to specify a custom encoding
when declaring the type5. For example, to have the Absent tag represented as 1 and the Present tag
represented as 0, one could have defined the option type as :

type $t option =

Absent %1

| Present %0 of $t

The data associated to each distinct tag are encoded in the data part (LSBs).

Listing 14.2: Code generated by the VHDL backend for the option type declaration� �
1 package opt ion int8 i s
2 function i s absent (t : s td log i c vector) return boolean ;
3 function i s p r e s ent (t : s td log i c vector) return boolean ;
4 constant mk absent : s td log i c vector (8 downto 0) := ”0” &

to std log ic vector (to s igned (0 , 8) ,8) ;
5 function mk present (d : s i gned (7 downto 0)) return s td log i c vector ;
6 function get present (t : s td log i c vector) return s igned ;
7 end opt ion int8 ;
8
9 package body opt ion int8 i s

10
11 function i s absent (t : s td log i c vector) return boolean i s
12 begin
13 return t (8 downto 8) = ”0” ;
14 end ;

2In file xxx types.vhd, where xxx is the name of the top module.
3A std logic vector
4And detailed in Tab. 2.5
5This feature is typically used when the values of the variant type are read/written by dedicated processes at the

VHDL level, which must know the actual bit-level encoding of values.

161

15
16 function i s p r e s ent (t : s td log i c vector) return boolean i s
17 begin
18 return t (8 downto 8) = ”1” ;
19 end ;
20
21 function mk present (d : s i gned (7 downto 0)) return s td log i c vector i s
22 begin
23 return ”1” & to std log ic vector (d , 8) ;
24 end ;
25
26 function get present (t : s td log i c vector) return s igned i s
27 begin
28 return f rom std logic vector (t (7 downto 0) ,8) ;
29 end ;
30
31 end package body opt ion int8 ;� �

162

Appendix A

Writing your own FIFO model

TBW

163

Appendix B

The txt2bin command

NAME

txt2bin - convert CAPH text input files to text-encoded binary format

SYNOPSIS

txt2bin [-eventf] [-dc] [-abbrev] [-hblank n] [-vblank n] [-out file] format bitwidth file(s)

DESCRIPTION

This program can be used to convert CAPH text input files to text-encoded binary format to be used
by the testbenches generated by the VHDL backend of the CAPH compiler

ARGUMENTS

format

type of data tokens to be read in the input file: uint, sint, float or bool

bitwidth

size, in bits, of the data words to write in the output file

file(s)

name of the input file(s); if several files are specified, the results of converting each of them will
be concatenated in the output file

OPTIONS

-eventf

process event files, describing timed sequence of events for input ports (default is to process stream
files, describing untimed sequence of tokens for input streams)

164

-dc

encode tokens having type t dc with the following convention: 11xxxxxx for Data v, 01xxxxxx
for SoS and 10xxxxxx for SoS

-abbrev

use abbreviated syntax for tokens having type t dc in the input file (v for Data v, < for SoS and
> for EoS)

-hblank n

insert n ”no data” extra tokens (00xxxxxx) in the output file after each EoS token (end of line)

-vblank n

insert n ”no data” extra tokens (00xxxxxx) in the output file after each pair of successive EoS

token (end of frame)

-out file

write result in file file (default is to write on stdout)

EXAMPLES

The following command will convert the file sample.txt, containing the representation of an stream of
type signed<16>, writting the result in file sample.bin :

txt2bin -out sample.bin sint 16 sample.txt

The following command will convert a sequence of file im1.txt, ..., im8.txt, each containing the
representation of an image encoded with the type unsigned<8 dc>, inserting 4 blank tokens at the
end of each line and 16 blank tokens at the end of each image, and writting the result in file imgs.bin :

txt2bin -dc -abbrev -out imgs.bin -hblank 4 -vblank 16 uint 8 im[1-8].txt

EXIT STATUS

The program returns a zero exist status if it succeeds and a non zero value in case of failure. In the
latter case, an error message is printed to stderr.

CAVEAT

The program can only convert files containing tokens with a scalar type (signed or unsigned int, float32
or boolean) or with type t dc, where t is a scalar type. Arrays and user-defined variant types are not
supported.

When converting tokens of type t dc, the size in bits of individual words in the output file is n+2,
where n is the specified bitwidth. The two extra bits are used to encode the tag.

Using the special value 00xxxxx to handle blanking is a hack. It can also increase significantly the
size of the output file.

When using the float format, the only accepted bitwidth is 32. Moreover, the program may not work
correctly in this case on platforms on which the size of unsigned int and float (as reported by the
C operator sizeof is not 4 bytes (32 bits).

The program cannot direcly read image file in PGM format. For this, use the pgm2bin program.

165

Appendix C

The bin2txt command

NAME

bin2txt - convert CAPH text-encoded binary format to text format

SYNOPSIS

txt2bin [-dc] [-abbrev] [-out <file>] [-split frames] format bitwidth file

DESCRIPTION

This program can be used to convert the .bin files read or produced by the VHDL backend of the CAPH
compiler to text format

ARGUMENTS

format

type of data tokens (uint, sint, float or bool)

bitwidth

size, in bits, of the data words to read in the input file

file

name of the input file

OPTIONS

-dc

decode tokens having type t dc with the following convention: 11xxxxxx for Data v, 01xxxxxx
for SoS and 10xxxxxx for SoS

-abbrev

for tokens having type t dc, write the result using the abbreviated syntax in the output file (v
for Data(v), ”<” for SoS and ”>” for EoS)

166

-out file

write result in file file (default is to write on stdout)

-split frames

if the sequence of input tokens, having type t dc, represent a sequence of images (frames), write
each result image in a separate file; the resulting files will be named xxx 1, xxx 2, etc.. where
xxx is the name given under the -out option

EXAMPLES

The following command will convert the file result.bin, containing the representation of a stream of type
signed<16>, writting the result in file result.txt :

bin2txt -out result.txt sint 16 result.bin

The following command will convert the file result.bin, containing the representation of a sequence
of 8 images, each encoded with the type unsigned<8>dc, writting the result in files result 1.txt, ...,
result 8.txt :

txt2bin -dc -abbrev -out result.txt -split_frames uint 8 result.bin

EXIT STATUS

The program returns a zero exit status if it succeeds and a non zero value in case of failure. In the
latter case, an error message is printed to stderr.

CAVEAT

The program can only convert files containing tokens with a scalar type (signed or unsigned int, float32
or boolean) or with type t dc, where t is a scalar type. Arrays and user-defined variant types are not
supported.

When converting tokens of type t dc, the size in bits of individual words in the input file should
n+2, where n is the specified bitwidth. The two extra bits are used to encode the tag.

When using the float format, the only accepted bitwidth is 32. Moreover, the program may not work
correctly in this case on platforms on which the size of unsigned int and float (as reported by the
C operator sizeof is not 4 bytes (32 bits).

When using the bool format, the only accepted bitwidth is 1.
The program cannot direcly write image file(s) in PGM format. To have a VHDL testbench generate

PGM files, the txt2pgm program has be used on each generated text file.
When using the -split frames option, an extra, empty file is sometimes generated.
The result of using the -split frames when the input file does not actually contains a sequence of

dc-encoded images is undefined.

167

Appendix D

The pgm2txt command

NAME

pgm2txt - convert PGM image files to CAPH text input files

SYNOPSIS

pgm2txt [-abbrev] in file out file

DESCRIPTION

This program can be used to convert PGM files to text files which can be read by the CAPH interpreter
and the testbench generated by the SystemC backend.

ARGUMENTS

in file

name of the input file

out file

name of the output file

OPTIONS

-abbrev

use abbreviated syntax for tokens in the ouput file (v for Data v, < for SoS and > for EoS)

EXIT STATUS

The program returns a zero exist status if it succeeds and a non zero value in case of failure. In the
latter case, an error message is printed to stderr.

168

Appendix E

The txt2pgm command

NAME

txt2pgm - convert CAPH text input/output files to PGM files

SYNOPSIS

txt2pgm [-abbrev] maxv in file out file

DESCRIPTION

This program can be used to convert text files to PGM files, to be viewed by image viewers.

ARGUMENTS

maxv

maximum pixel value, to be specified in the PGM file header

in file

name of the input file

out file

name of the output file

OPTIONS

-abbrev

use abbreviated syntax for tokens in the input file (v for Data v, < for SoS and > for EoS)

EXIT STATUS

The program returns a zero exist status if it succeeds and a non zero value in case of failure. In the
latter case, an error message is printed to stderr.

169

Appendix F

The pgm2bin command

NAME

pgm2bin - convert PGM image files to text-encoded binary format

SYNOPSIS

pgm2bin [-hblank n] [-vblank n] bitwidth in file out file

DESCRIPTION

This program can be used to convert PGM files to text-encoded binary format to be used by the
testbenches generated by the VHDL backend of the CAPH compiler

ARGUMENTS

bitwidth

size, in bits, of the data words to write in the output file (including the two extra bits for tagging)

in file

name of the input file

out file

name of the output file

OPTIONS

-hblank n

insert n ”no data” extra tokens (00xxxxxx) in the output file after each EoS token (end of line)

-vblank n

insert n ”no data” extra tokens (00xxxxxx) in the output file after each pair of successive EoS

token (end of frame)

170

EXIT STATUS

The program returns a zero exist status if it succeeds and a non zero value in case of failure. In the
latter case, an error message is printed to stderr.

CAVEAT

The size in bits of individual words in the output file is n+2, where n is the specified bitwidth. The
two extra bits are used to encode the tag.

Using the special value 00xxxxx to handle blanking is a hack. It can also significantly increase the
size of the output file.

171

Appendix G

The bin2pgm command

NAME

bin2pgm - convert CAPH text-encoded binary format to PGM file

SYNOPSIS

bin2pgm bitwidth ifile ofile

DESCRIPTION

This program can be used to convert the .bin files read or produced by the VHDL backend of the CAPH
compiler to to be viewed by image viewers.

ARGUMENTS

bitwidth

size, in bits, of the data words to read in the input file

ifile

name of the input file

ofile

name of the output file

EXIT STATUS

The program returns a zero exit status if it succeeds and a non zero value in case of failure. In the
latter case, an error message is printed to stderr.

172

Appendix H

The mkdcimg command

NAME

mkdcimg - make text representation of test images using the dc format

SYNOPSIS

mkdcimg [-const val | -linear max | -grid width] [-out file] [-abbrev] nrows ncols

DESCRIPTION

This program can be used to create test images stored in the text format used by the CAPH interpreter
and the backends generated by the SystemC backend.

ARGUMENTS

nrows

number of rows in the output image

ncols

number of columns in the output image

OPTIONS

-const val

the image is composed of pixels all having value val

-linear maxv

the ith pixel of the image (starting at column 0 of row 0) has value i mod maxv

-grid width

the pixel at column j of row i has value ((i+1)*width+(j+1)

173

-out file

write result in file file (default is to write on stdout)

-abbrev

write the result image using the abbreviated syntax (v for Data v, < for SoS and > for EoS)

EXAMPLES

The following command

mkdcimg -const 1 -abbrev 4 4

produces this image :

< < 1 1 1 1 > < 1 1 1 1 > < 1 1 1 1 > < 1 1 1 1 > >

The following command

mkdcimg -linear 8 -abbrev 4 4

produces this image :

< < 1 2 3 4 > < 5 6 7 0 > < 1 2 3 4 > < 5 6 7 0 > >

The following command

./mkdcimg -grid 10 -abbrev -out foo.txt 4 4

produces this image, in file foo.txt :

< < 11 12 13 14 > < 21 22 23 24 > < 31 32 33 34 > < 41 42 43 44 > >

EXIT STATUS

The program returns a zero exist status if it succeeds and a non zero value in case of failure. In the
latter case, an error message is printed to stderr.

174

Appendix I

The mkconv command

NAME

mkdcimg - generate MxN convolution and neighborhood generation actors

SYNOPSIS

mkconv [-name name] [-o file] -dim d -mode (shifted|centered|neigh) -h nr -w nc”

DESCRIPTION

This program can be used to generate the description in CAPH of MxN convolution and neighborhood
generation actors.

ARGUMENTS

-w nc

kernel / neighborhood width (number of columns)

OPTIONS

-o file

write result in file file (default is to write on stdout)

-name name

name of the generated actor (default is (conv|cconv|neigh)<dim<h><w>a>)

-mode m

kind of actor generated (m=shifted : shifted convolution, m=centered : centered convolution,
m=neigh : neighborhood generator) (default: shifted convolution)

-dim d

input signal dimension (1 for 1D signals, 2 for 2D images) (default: 1)

175

-h nr

kernel / neighborhood height (number of rows) when dim=2

EXAMPLES

The following command
mkconv -dim 1 -mode shifted -w 3
generates (on stdout) the description of an actor conv113 computing the shifted 1x3 convolution of

1D signals (i.e. lists)
The following command
mkconv -o myconv.cph -name conv55 -dim 2 -mode centered -h 5 -w 5
generates, in file myconv.cph, the description of an actor conv55 computing the centered 5x3 con-

volution operating on images

EXIT STATUS

The program returns a zero exist status if it succeeds and a non zero value in case of failure. In the
latter case, an error message is printed to stderr.

CAVEAT

The generated convolution actors (shifted or centered) only operate on size and sign generic integers
but the sign and size of the inputs, kernel coefficients and outputs must be the same. It is not passible,
for example, to take a (structured) stream a signed 8-bit integers, convoluate it with a kernel made of
unsigned 4-bit integers and produce a stream of 12-bit signed integers.

Some predefined versions of the actors which can be generated by this program can be found in
the CAPH library, in files convol.cph and neigh.cph. A detailed description of the convolution and
neighborhood generation operations is given in these files.

This program appeared in version 2.7.2 of the CAPH distribution.

176

Appendix J

The caphmake command

NAME

caphmake - Makefile generator for CAPH projects

SYNOPSIS

caphmake [-main name] [-caph dir path] [-o file] [file]

DESCRIPTION

This program reads .proj and .cph files and generates top-level Makefiles for CAPH projects.

ARGUMENTS

file

name of the project file (default is main.proj)

OPTIONS

-main name

set name of the top-level CAPH source file (default is main.cph)

-caph dir path

set path to the CAPH install directory (default: got from the CAPH environment variable)

-o file

write result in file file (default is to write on Makefile)

EXIT STATUS

The program returns a zero exist status if it succeeds and a non zero value in case of failure. In the
latter case, an error message is printed to stderr.

177

Bibliography

[1] Graphviz - graph visualization software.

[2] The objective caml language.

[3] A. L. Davis and R. M. Keller. Data flow program graphs. Computer, 15(2):26–41, 1982.

[4] T.M. Parks E.A. Lee. Dataflow process networks. Proceedings of The IEEE, 83:773–801, 1995.

[5] J. Eker and J. Janneck. Cal language report. Technical Report ERL Technical Memo UCB/ERL
M03/48, University of California at Berkeley, December 2003.

[6] Kevin Hammond and Greg Michaelson. Hume: a domain-specific language for real-time embedded
systems. In GPCE ’03: Proceedings of the 2nd international conference on Generative programming
and component engineering, pages 37–56, New York, NY, USA, 2003. Springer-Verlag New York,
Inc.

[7] Gilles Kahn. The semantics of simple language for parallel programming. In IFIP Congress, pages
471–475, 1974.

[8] S. North and E. Koutsofios. Applications of graph visualization. In Graphics Interface, Banff,
Alberta, 1994.

[9] T.M. Parks. Bounded Scheduling of Process Networks. PhD thesis, UCB, 1995.

[10] J. Sérot. The semantics of a purely functional graph notation system. In 9th Symposium on Trends
in Functional Programming, 2008.

[11] Jocelyn Sérot, Georges Quénot, and Bertrand Zavidovique. A visual dataflow programming envi-
ronment for a real time parallel vision machine. J. Vis. Lang. Comput., 6(4):327–347, 1995.

[12] Matthieu Wipliez and Mickaël Raulet. Classification of dataflow actors with satisfiability and
abstract interpretation. Int. J. Embed. Real-Time Commun. Syst., 3(1):49–69, January 2012.

178

